zoukankan      html  css  js  c++  java
  • 多边形区域填充算法--递归种子填充算法

    http://blog.csdn.net/orbit/article/details/7323090

         平面区域填充算法是计算机图形学领域的一个很重要的算法,区域填充即给出一个区域的边界(也可以是没有边界,只是给出指定颜色),要求将边界范围内的所有象素单元都修改成指定的颜色(也可能是图案填充)。区域填充中最常用的是多边形填色,本文中我们就讨论几种多边形区域填充算法。

    一、种子填充算法(Seed Filling)

            如果要填充的区域是以图像元数据方式给出的,通常使用种子填充算法(Seed Filling)进行区域填充。种子填充算法需要给出图像数据的区域,以及区域内的一个点,这种算法比较适合人机交互方式进行的图像填充操作,不适合计算机自动处理和判断填色。根据对图像区域边界定义方式以及对点的颜色修改方式,种子填充又可细分为几类,比如注入填充算法(Flood Fill Algorithm)、边界填充算法(Boundary Fill Algorithm)以及为减少递归和压栈次数而改进的扫描线种子填充算法等等。

            所有种子填充算法的核心其实就是一个递归算法,都是从指定的种子点开始,向各个方向上搜索,逐个像素进行处理,直到遇到边界,各种种子填充算法只是在处理颜色和边界的方式上有所不同。在开始介绍种子填充算法之前,首先也介绍两个概念,就是“4-联通算法”和“8-联通算法”。既然是搜索就涉及到搜索的方向问题,从区域内任意一点出发,如果只是通过上、下、左、右四个方向搜索到达区域内的任意像素,则用这种方法填充的区域就称为四连通域,这种填充方法就称为“4-联通算法”。如果从区域内任意一点出发,通过上、下、左、右、左上、左下、右上和右下全部八个方向到达区域内的任意像素,则这种方法填充的区域就称为八连通域,这种填充方法就称为“8-联通算法”。如图1(a)所示,假设中心的蓝色点是当前处理的点,如果是“4-联通算法”,则只搜索处理周围蓝色标识的四个点,如果是“8-联通算法”则除了处理上、下、左、右四个蓝色标识的点,还搜索处理四个红色标识的点。两种搜索算法的填充效果分别如如图1(b)和图1(c)所示,假如都是从黄色点开始填充,则“4-联通算法”如图1(b)所示只搜索填充左下角的区域,而“8-联通算法”则如图1(c)所示,将左下角和右上角的区域都填充了。

    图(1) “4-联通”和“8-联通”填充效果

     

            并不能仅仅因为图1的填充效果就认为“8-联通算法”一定比“4-联通算法”好,应该根据应用环境和实际的需求选择联通搜索方式,在很多情况下,只有“4-联通算法”才能得到正确的结果。

    1.1 注入填充算法(Flood Fill Algorithm)

            注入填充算法不特别强调区域的边界,它只是从指定位置开始,将所有联通区域内某种指定颜色的点都替换成另一种颜色,从而实现填充效果。注入填充算法能够实现颜色替换之类的功能,这在图像处理软件中都得到了广泛的应用。注入填充算法的实现非常简单,核心就是递归和搜索,以下就是注入填充算法的一个实现:

    164 void FloodSeedFill(int x, int y, int old_color, int new_color)

    165 {

    166     if(GetPixelColor(x, y) == old_color)

    167     {

    168         SetPixelColor(x, y, new_color);

    169         for(int i = 0; i < COUNT_OF(direction_8); i++)

    170         {

    171             FloodSeedFill(x + direction_8[i].x_offset,

    172                           y + direction_8[i].y_offset, old_color, new_color);

    173         }

    174     }

    175 }

     for循环实现了向8个联通方向的递归搜索,秘密就在direction_8的定义:

    15 typedef struct tagDIRECTION

    16 {

    17     int x_offset;

    18     int y_offset;

    19 }DIRECTION;

    79 DIRECTION direction_8[] = { {-1, 0}, {-1, 1}, {0, 1}, {1, 1}, {1, 0}, {1, -1},{0, -1}, {-1, -1} };

     

    这个是搜索类算法中常用的技巧,无需做太多说明,其实只要将其替换成如下direction_4的定义,就可以将算法改成4个联通方向填充算法:

    80 DIRECTION direction_4[] = { {-1, 0}, {0, 1}, {1, 0}, {0, -1} };

    图2就是应用本算法实现的“4-联通”和“8-联通”填充效果:

    图(2) 注入填充算法实现

    1.2 边界填充算法(Boundary Fill Algorithm)

            边界填充算法与注入填充算法的本质其实是一样的,都是递归和搜索,区别只在于对边界的确认,也就是递归的结束条件不一样。注入填充算法没有边界的概念,只是对联通区域内指定的颜色进行替换,而边界填充算法恰恰强调边界的存在,只要是边界内的点无论是什么颜色,都替换成指定的颜色。边界填充算法在应用上也非常的广泛,画图软件中的“油漆桶”功能就是边界填充算法的例子。以下就是边界填充算法的一个实现:

    177 void BoundarySeedFill(int x, int y, int new_color, int boundary_color)

    178 {

    179     int curColor = GetPixelColor(x, y);

    180     if( (curColor != boundary_color)

    181         && (curColor != new_color) )

    182     {

    183         SetPixelColor(x, y, new_color);

    184         for(int i = 0; i < COUNT_OF(direction_8); i++)

    185         {

    186             BoundarySeedFill(x + direction_8[i].x_offset,

    187                              y + direction_8[i].y_offset, new_color, boundary_color);

    188         }

    189     }

    190 }

    关于direction_8的说明请参考上一节,图3就是应用本算法实现的“4-联通”和“8-联通”填充效果(其中颜色值是1的点就是指定的边界):

    图(3) 边界填充算法实现

  • 相关阅读:
    多个类定义attr属性重复的问题:Attribute "xxx" has already been defined
    好用的批量改名工具——文件批量改名工具V2.0 绿色版
    得到ImageView中drawable显示的区域的计算方法
    得到view坐标的各种方法
    实现类似于QQ空间相册的点击图片放大,再点后缩小回原来位置
    Material Designer的低版本兼容实现(五)—— ActivityOptionsCompat
    Android 自带图标库 android.R.drawable
    解决 Attempting to destroy the window while drawing!
    解决Using 1.7 requires compiling with Android 4.4 (KitKat); currently using API 4
    Material Designer的低版本兼容实现(四)—— ToolBar
  • 原文地址:https://www.cnblogs.com/DjangoBlog/p/6950830.html
Copyright © 2011-2022 走看看