zoukankan      html  css  js  c++  java
  • 转:pytorch版的bilstm+crf实现sequence label

    http://blog.csdn.net/appleml/article/details/78664824

    在理解CRF的时候费了一些功夫,将一些难以理解的地方稍微做了下标注,隔三差五看看加强记忆, 代码是pytorch文档上的example

    import torch
    import torch.autograd as autograd
    import torch.nn as nn
    import torch.optim as optim
    
    def to_scalar(var): #var是Variable,维度是1
        # returns a python float
        return var.view(-1).data.tolist()[0]
    
    def argmax(vec):
        # return the argmax as a python int
        _, idx = torch.max(vec, 1)
        return to_scalar(idx)
    
    def prepare_sequence(seq, to_ix):
        idxs = [to_ix[w] for w in seq]
        tensor = torch.LongTensor(idxs)
        return autograd.Variable(tensor)
    
    # Compute log sum exp in a numerically stable way for the forward algorithm
    def log_sum_exp(vec): #vec是1*5, type是Variable
    
        max_score = vec[0, argmax(vec)]
        #max_score维度是1, max_score.view(1,-1)维度是1*1,max_score.view(1, -1).expand(1, vec.size()[1])的维度是1*5
        max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1]) # vec.size()维度是1*5
        return max_score + torch.log(torch.sum(torch.exp(vec - max_score_broadcast)))#为什么指数之后再求和,而后才log呢
    
    class BiLSTM_CRF(nn.Module):
        def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim):
            super(BiLSTM_CRF, self).__init__()
            self.embedding_dim = embedding_dim
            self.hidden_dim = hidden_dim
            self.vocab_size = vocab_size
            self.tag_to_ix = tag_to_ix
            self.tagset_size = len(tag_to_ix)
    
            self.word_embeds = nn.Embedding(vocab_size, embedding_dim)
    
            self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2, num_layers=1, bidirectional=True)
    
            # Maps the output of the LSTM into tag space.
            self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size)
    
            # Matrix of transition parameters.  Entry i,j is the score of
            # transitioning *to* i *from* j.
            self.transitions = nn.Parameter(torch.randn(self.tagset_size, self.tagset_size))
    
            # These two statements enforce the constraint that we never transfer
            # to the start tag and we never transfer from the stop tag
            self.transitions.data[tag_to_ix[START_TAG], :] = -10000
            self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000
    
            self.hidden = self.init_hidden()
    
        def init_hidden(self):
            return (autograd.Variable(torch.randn(2, 1, self.hidden_dim // 2)),
                    autograd.Variable(torch.randn(2, 1, self.hidden_dim // 2)))
        #预测序列的得分
        def _forward_alg(self, feats):
            # Do the forward algorithm to compute the partition function
            init_alphas = torch.Tensor(1, self.tagset_size).fill_(-10000.)
    
            # START_TAG has all of the score.
            init_alphas[0][self.tag_to_ix[START_TAG]] = 0.
    
            # Wrap in a variable so that we will get automatic backprop
            forward_var = autograd.Variable(init_alphas) #初始状态的forward_var,随着step t变化
    
            # Iterate through the sentence
            for feat in feats: #feat的维度是5
                alphas_t = []  # The forward variables at this timestep
                for next_tag in range(self.tagset_size):
                    # broadcast the emission score: it is the same regardless of
                    # the previous tag
                    emit_score = feat[next_tag].view(1, -1).expand(1, self.tagset_size) #维度是1*5
    
                    # the ith entry of trans_score is the score of transitioning to
                    # next_tag from i
                    trans_score = self.transitions[next_tag].view(1, -1) #维度是1*5
                    # The ith entry of next_tag_var is the value for the
                    # edge (i -> next_tag) before we do log-sum-exp
                    #第一次迭代时理解:
                    # trans_score所有其他标签到B标签的概率
                    # 由lstm运行进入隐层再到输出层得到标签B的概率,emit_score维度是1*5,5个值是相同的
                    next_tag_var = forward_var + trans_score + emit_score
                    # The forward variable for this tag is log-sum-exp of all the
                    # scores.
                    alphas_t.append(log_sum_exp(next_tag_var))
    
                forward_var = torch.cat(alphas_t).view(1, -1)#到第(t-1)step时5个标签的各自分数
            terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
            alpha = log_sum_exp(terminal_var)
    
            return alpha
    
        #得到feats
        def _get_lstm_features(self, sentence):
            self.hidden = self.init_hidden()
            #embeds = self.word_embeds(sentence).view(len(sentence), 1, -1)
            embeds = self.word_embeds(sentence)
    
            embeds = embeds.unsqueeze(1)
    
            lstm_out, self.hidden = self.lstm(embeds, self.hidden)
            lstm_out = lstm_out.view(len(sentence), self.hidden_dim)
    
            lstm_feats = self.hidden2tag(lstm_out)
    
            return lstm_feats
    
        #得到gold_seq tag的score
        def _score_sentence(self, feats, tags):
            # Gives the score of a provided tag sequence
            score = autograd.Variable(torch.Tensor([0]))
            tags = torch.cat([torch.LongTensor([self.tag_to_ix[START_TAG]]), tags]) #将START_TAG的标签3拼接到tag序列上
    
            for i, feat in enumerate(feats):
                #self.transitions[tags[i + 1], tags[i]] 实际得到的是从标签i到标签i+1的转移概率
                #feat[tags[i+1]], feat是step i 的输出结果,有5个值,对应B, I, E, START_TAG, END_TAG, 取对应标签的值
    
                score = score + self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]]
            score = score + self.transitions[self.tag_to_ix[STOP_TAG], tags[-1]]
            return score
        #解码,得到预测的序列,以及预测序列的得分
        def _viterbi_decode(self, feats):
            backpointers = []
    
            # Initialize the viterbi variables in log space
            init_vvars = torch.Tensor(1, self.tagset_size).fill_(-10000.)
            init_vvars[0][self.tag_to_ix[START_TAG]] = 0
    
            # forward_var at step i holds the viterbi variables for step i-1
            forward_var = autograd.Variable(init_vvars)
            for feat in feats:
                bptrs_t = []  # holds the backpointers for this step
                viterbivars_t = []  # holds the viterbi variables for this step
    
                for next_tag in range(self.tagset_size):
                    # next_tag_var[i] holds the viterbi variable for tag i at the
                    # previous step, plus the score of transitioning
                    # from tag i to next_tag.
                    # We don't include the emission scores here because the max
                    # does not depend on them (we add them in below)
                    next_tag_var = forward_var + self.transitions[next_tag] #其他标签(B,I,E,Start,End)到标签next_tag的概率
                    best_tag_id = argmax(next_tag_var)
                    bptrs_t.append(best_tag_id)
                    viterbivars_t.append(next_tag_var[0][best_tag_id])
                # Now add in the emission scores, and assign forward_var to the set
                # of viterbi variables we just computed
                forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1)#从step0到step(i-1)时5个序列中每个序列的最大score
                backpointers.append(bptrs_t) #bptrs_t有5个元素
    
            # Transition to STOP_TAG
            terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]#其他标签到STOP_TAG的转移概率
            best_tag_id = argmax(terminal_var)
            path_score = terminal_var[0][best_tag_id]
    
            # Follow the back pointers to decode the best path.
            best_path = [best_tag_id]
            for bptrs_t in reversed(backpointers):#从后向前走,找到一个best路径
                best_tag_id = bptrs_t[best_tag_id]
                best_path.append(best_tag_id)
            # Pop off the start tag (we dont want to return that to the caller)
            start = best_path.pop()
            assert start == self.tag_to_ix[START_TAG]  # Sanity check
            best_path.reverse()# 把从后向前的路径正过来
            return path_score, best_path
    
        def neg_log_likelihood(self, sentence, tags):
            feats = self._get_lstm_features(sentence)
            forward_score = self._forward_alg(feats)
            gold_score = self._score_sentence(feats, tags)
    
            return forward_score - gold_score
    
        def forward(self, sentence):  # dont confuse this with _forward_alg above.
            # Get the emission scores from the BiLSTM
            lstm_feats = self._get_lstm_features(sentence)
    
            # Find the best path, given the features.
            score, tag_seq = self._viterbi_decode(lstm_feats)
            return score, tag_seq
    
    START_TAG = "<START>"
    STOP_TAG = "<STOP>"
    EMBEDDING_DIM = 5
    HIDDEN_DIM = 4
    
    # Make up some training data
    training_data = [("the wall street journal reported today that apple corporation made money".split(), "B I I I O O O B I O O".split()),
                     ("georgia tech is a university in georgia".split(), "B I O O O O B".split())]
    
    word_to_ix = {}
    for sentence, tags in training_data:
        for word in sentence:
            if word not in word_to_ix:
                word_to_ix[word] = len(word_to_ix)
    
    tag_to_ix = {"B": 0, "I": 1, "O": 2, START_TAG: 3, STOP_TAG: 4}
    
    model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM)
    optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4)
    
    # Check predictions before training
    # precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
    # precheck_tags = torch.LongTensor([tag_to_ix[t] for t in training_data[0][1]])
    # print(model(precheck_sent))
    
    # Make sure prepare_sequence from earlier in the LSTM section is loaded
    for epoch in range(1):  # again, normally you would NOT do 300 epochs, it is toy data
        for sentence, tags in training_data:
            # Step 1. Remember that Pytorch accumulates gradients.
            # We need to clear them out before each instance
            model.zero_grad()
    
            # Step 2. Get our inputs ready for the network, that is,
            # turn them into Variables of word indices.
            sentence_in = prepare_sequence(sentence, word_to_ix)
            targets = torch.LongTensor([tag_to_ix[t] for t in tags])
    
            # Step 3. Run our forward pass.
            neg_log_likelihood = model.neg_log_likelihood(sentence_in, targets)
    
            # Step 4. Compute the loss, gradients, and update the parameters by
            # calling optimizer.step()
            neg_log_likelihood.backward()
            optimizer.step()
    
    # Check predictions after training
    precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
    print(model(precheck_sent)[0]) #得分
    print('^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^')
    print(model(precheck_sent)[1]) #tag sequence
  • 相关阅读:
    XML基础介绍【二】
    XML基础介绍【一】
    Java面向对象(三) 【面向对象深入:抽象类,接口,内部类等】
    Java面向对象(二)
    Java面向对象(一)
    main特别之处
    c语言线性表
    c语言三元组
    线性表(顺序表的创建)
    创建一个三元组
  • 原文地址:https://www.cnblogs.com/DjangoBlog/p/8280060.html
Copyright © 2011-2022 走看看