zoukankan      html  css  js  c++  java
  • Python程序中的线程操作-concurrent模块

    Python程序中的线程操作-concurrent模块

    一、Python标准模块——concurrent.futures

    官方文档:https://docs.python.org/dev/library/concurrent.futures.html

    二、介绍

    concurrent.futures模块提供了高度封装的异步调用接口
    ThreadPoolExecutor:线程池,提供异步调用
    ProcessPoolExecutor:进程池,提供异步调用
    Both implement the same interface, which is defined by the abstract Executor class.

    三、基本方法

    submit(fn, *args, **kwargs):异步提交任务
    map(func, *iterables, timeout=None, chunksize=1):取代for循环submit的操作
    shutdown(wait=True):相当于进程池的pool.close()+pool.join()操作

    • wait=True,等待池内所有任务执行完毕回收完资源后才继续
    • wait=False,立即返回,并不会等待池内的任务执行完毕
    • 但不管wait参数为何值,整个程序都会等到所有任务执行完毕
    • submit和map必须在shutdown之前

    result(timeout=None):取得结果
    add_done_callback(fn):回调函数
    done():判断某一个线程是否完成
    cancle():取消某个任务

    四、ProcessPoolExecutor

    # 介绍
    """
    The ProcessPoolExecutor class is an Executor subclass that uses a pool of 
    processes to execute calls asynchronously. ProcessPoolExecutor uses the
    multiprocessing module, which allows it to side-step the Global Interpreter
    Lock but also means that only picklable objects can be executed and returned.
    
    class concurrent.futures.ProcessPoolExecutor(max_workers=None, mp_context=None)
    An Executor subclass that executes calls asynchronously using a pool of at most 
    max_workers processes. If max_workers is None or not given, it will default to 
    the number of processors on the machine. If max_workers is lower or equal to 0,
    then a ValueError will be raised.
    """
    
    # 用法
    from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
    
    import os,time,random
    def task(n):
        print('%s is runing' %os.getpid())
        time.sleep(random.randint(1,3))
        return n**2
    
    if __name__ == '__main__':
    
        executor=ProcessPoolExecutor(max_workers=3)
    
        futures=[]
        for i in range(11):
            future=executor.submit(task,i)
            futures.append(future)
        executor.shutdown(True)
        print('+++>')
        for future in futures:
            print(future.result())
    

    五、ThreadPoolExecutor

    # 用法
    与ProcessPoolExecutor相同
    

    六、map的用法

    from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
    
    import os,time,random
    def task(n):
        print('%s is runing' %os.getpid())
        time.sleep(random.randint(1,3))
        return n**2
    
    if __name__ == '__main__':
    
        executor=ThreadPoolExecutor(max_workers=3)
    
        # for i in range(11):
        #     future=executor.submit(task,i)
    
        executor.map(task,range(1,12)) #map取代了for+submit
    

    七、回调函数

    from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
    from multiprocessing import Pool
    import requests
    import json
    import os
    
    def get_page(url):
        print('<进程%s> get %s' %(os.getpid(),url))
        respone=requests.get(url)
        if respone.status_code == 200:
            return {'url':url,'text':respone.text}
    
    def parse_page(res):
        res=res.result()
        print('<进程%s> parse %s' %(os.getpid(),res['url']))
        parse_res='url:<%s> size:[%s]
    ' %(res['url'],len(res['text']))
        with open('db.txt','a') as f:
            f.write(parse_res)
    
    
    if __name__ == '__main__':
        urls=[
            'https://www.baidu.com',
            'https://www.python.org',
            'https://www.openstack.org',
            'https://help.github.com/',
            'http://www.sina.com.cn/'
        ]
    
        # p=Pool(3)
        # for url in urls:
        #     p.apply_async(get_page,args=(url,),callback=pasrse_page)
        # p.close()
        # p.join()
    
        p=ProcessPoolExecutor(3)
        for url in urls:
            p.submit(get_page,url).add_done_callback(parse_page) #parse_page拿到的是一个future对象obj,需要用obj.result()拿到结果
    
  • 相关阅读:
    python 获取项目的根路径
    信息系统项目管理师-1.4软件工程
    信息系统项目管理师
    信息系统项目管理师-导学
    信息系统项目管理师-考试安排
    读取text行列
    pipeline基本框架思维
    Linux压缩隐藏文件
    python+appium环境搭建
    leetcode for mysql
  • 原文地址:https://www.cnblogs.com/Dr-wei/p/11852447.html
Copyright © 2011-2022 走看看