zoukankan      html  css  js  c++  java
  • 拓扑排序

    有很多奇妙的题.....

    题目VJ上做了些.

    近期在POJ和HDU上做一些题,参考 http://blog.csdn.net/shahdza/article/details/7779389

    HDU 1285 裸题不讲=w=很久以前用Vector建图的时候就A了......

    HDU 2647 就是判断一下是否有拓扑序列(这个可以用强连通分量Tarjan做=w=但是拓扑排写起来比较简单...)

    然后总代价就是按照排序层数(具体看程序,我们把能够同时存在于队列中的元素表上同一个dep)算....

      1 #include <cstdio>
      2 #include <fstream>
      3 #include <iostream>
      4  
      5 #include <cstdlib>
      6 #include <cstring>
      7 #include <algorithm>
      8 #include <cmath>
      9  
     10 #include <queue>
     11 #include <vector>
     12 #include <map>
     13 #include <set>
     14 #include <stack>
     15 #include <list>
     16  
     17 typedef unsigned int uint;
     18 typedef long long int ll;
     19 typedef unsigned long long int ull;
     20 typedef double db;
     21  
     22 using namespace std;
     23  
     24 inline int getint()
     25 {
     26     int res=0;
     27     char c=getchar();
     28     bool mi=false;
     29     while(c<'0' || c>'9') mi=(c=='-'),c=getchar();
     30     while('0'<=c && c<='9') res=res*10+c-'0',c=getchar();
     31     return mi ? -res : res;
     32 }
     33 inline ll getll()
     34 {
     35     ll res=0;
     36     char c=getchar();
     37     bool mi=false;
     38     while(c<'0' || c>'9') mi=(c=='-'),c=getchar();
     39     while('0'<=c && c<='9') res=res*10+c-'0',c=getchar();
     40     return mi ? -res : res;
     41 }
     42 
     43 //==============================================================================
     44 //==============================================================================
     45 //==============================================================================
     46 //==============================================================================
     47 
     48 
     49 struct edge
     50 {
     51     int in;
     52     edge*nxt;
     53 }pool[20050];
     54 edge*et;
     55 edge*eds[10050];
     56 void addedge(int a,int b)
     57 { et->in=b; et->nxt=eds[a]; eds[a]=et++; }
     58 #define FOREACH_EDGE(i,j) for(edge*i=eds[j];i;i=i->nxt)
     59 
     60 
     61 int n,m;
     62 
     63 int dep[10050];
     64 int deg[10050];
     65 bool used[10050];
     66 
     67 
     68 int main()
     69 {    
     70     while(scanf("%d%d",&n,&m)>0)
     71     {
     72         et=pool;
     73         memset(eds,0,sizeof(edge*)*(n+1));
     74         memset(dep,0,sizeof(int)*(n+1));
     75         memset(deg,0,sizeof(int)*(n+1));
     76         memset(used,0,sizeof(bool)*(n+1));
     77         
     78         for(int i=0;i<m;i++)
     79         {
     80             int a=getint()-1;
     81             int b=getint()-1;
     82             addedge(b,a);
     83             deg[a]++;
     84         }
     85         
     86         queue<int> q;
     87         for(int i=0;i<n;i++)
     88         if(deg[i]==0) q.push(i);
     89         
     90         while(!q.empty())
     91         {
     92             int x=q.front(); q.pop();
     93             used[x]=true;
     94             FOREACH_EDGE(e,x)
     95             {
     96                 deg[e->in]--;
     97                 if(deg[e->in]==0)
     98                 {
     99                     dep[e->in]=dep[x]+1;
    100                     q.push(e->in);
    101                 }
    102             }
    103         }
    104         
    105         bool ok=true;
    106         for(int i=0;i<n;i++)
    107         if(!used[i]) { ok=false; break; }
    108         
    109         if(!ok)
    110         {
    111             printf("-1
    ");
    112             continue;
    113         }
    114         
    115         int res=0;
    116         for(int i=0;i<n;i++)
    117         res+=dep[i]+888;
    118         
    119         printf("%d
    ",res);
    120     }
    121     
    122     return 0;
    123 }
    View Code

    HDU 1811

    判断是否存在拓扑序,以及是否存在确定的拓扑序.

    判断是否存在,就是按照上面的,能把所有点压入队列就肯定存在可行拓扑序列.

    (一般有环就说明限制条件存在矛盾,这个环中的任意一个节点都不能被压入队列)

    拓扑序列只有一个的条件是每时每刻队列中仅有一个节点.(否则这两个节点的顺序不定.)

    处理那个等号非常麻烦.三次提交都错在那里. 这个题看起来还可以用差分约束.

      1 #include <cstdio>
      2 #include <fstream>
      3 #include <iostream>
      4  
      5 #include <cstdlib>
      6 #include <cstring>
      7 #include <algorithm>
      8 #include <cmath>
      9  
     10 #include <queue>
     11 #include <vector>
     12 #include <map>
     13 #include <set>
     14 #include <stack>
     15 #include <list>
     16  
     17 typedef unsigned int uint;
     18 typedef long long int ll;
     19 typedef unsigned long long int ull;
     20 typedef double db;
     21  
     22 using namespace std;
     23  
     24 inline int getint()
     25 {
     26     int res=0;
     27     char c=getchar();
     28     bool mi=false;
     29     while(c<'0' || c>'9') mi=(c=='-'),c=getchar();
     30     while('0'<=c && c<='9') res=res*10+c-'0',c=getchar();
     31     return mi ? -res : res;
     32 }
     33 inline ll getll()
     34 {
     35     ll res=0;
     36     char c=getchar();
     37     bool mi=false;
     38     while(c<'0' || c>'9') mi=(c=='-'),c=getchar();
     39     while('0'<=c && c<='9') res=res*10+c-'0',c=getchar();
     40     return mi ? -res : res;
     41 }
     42 
     43 //==============================================================================
     44 //==============================================================================
     45 //==============================================================================
     46 //==============================================================================
     47 
     48 struct edge
     49 {
     50     int in;
     51     edge*nxt;
     52 }pool[20050];
     53 edge*et;
     54 edge*eds[2][10050];
     55 void addedge(int i,int j,int k)
     56 { et->in=j; et->nxt=eds[k][i]; eds[k][i]=et++; }
     57 #define FOREACH_EDGE(i,j,f) for(edge*i=eds[f][j];i;i=i->nxt)
     58 
     59 //union find
     60 int f[10050];
     61 void INIT(int size)
     62 { for(int i=0;i<size;i++) f[i]=i; }
     63 int findf(int x)
     64 { return f[x]==x ? x : f[x]=findf(f[x]); }
     65 void connect(int a,int b)
     66 { f[findf(a)]=findf(b); }
     67 
     68 int block[10050];
     69 int btot;
     70 bool used[10050];
     71 int deg[10050];
     72 
     73 int n,m;
     74 
     75 int A[20050];
     76 int B[20050];
     77 char C[20050];
     78 
     79 int main()
     80 {
     81     while(scanf("%d%d",&n,&m)>0)
     82     {
     83         INIT(n+1);
     84         memset(eds[1],0,sizeof(edge*)*(n+1));
     85         memset(block,0xFF,sizeof(int)*(n+1));
     86         et=pool;
     87         btot=0;
     88         
     89         bool unc=false;
     90         bool conf=false;
     91         
     92         for(int i=0;i<m;i++)
     93         {
     94             scanf("%d %c %d",&A[i],&C[i],&B[i]);
     95             if(C[i]=='=') connect(A[i],B[i]);
     96         }
     97         
     98         for(int i=0;i<m;i++)
     99         if(C[i]!='=')
    100         {
    101             if(findf(A[i])==findf(B[i])) conf=true;
    102             
    103             if(C[i]=='>') addedge(A[i],B[i],1);
    104             else if(C[i]=='<') addedge(B[i],A[i],1);
    105         }
    106         
    107         if(conf) { printf("CONFLICT
    "); continue; }
    108         
    109         for(int i=0;i<n;i++)
    110         {
    111             if(block[findf(i)]==-1)
    112             block[findf(i)]=btot++;
    113             block[i]=block[findf(i)];
    114         }
    115         
    116         memset(eds[0],0,sizeof(edge*)*(btot+1));
    117         memset(deg,0,sizeof(int)*(btot+1));
    118         memset(used,0,sizeof(bool)*(btot+1));
    119         
    120         for(int i=0;i<n;i++)
    121         FOREACH_EDGE(e,i,1)
    122         if(block[i]!=block[e->in])
    123         {
    124             addedge(block[i],block[e->in],0);
    125             deg[block[e->in]]++;
    126         }
    127         
    128         queue<int> q;
    129         for(int i=0;i<btot;i++)
    130         if(deg[i]==0) q.push(i);
    131         
    132         while(!q.empty())
    133         {
    134             if(q.size()>1) unc=true;
    135             int x=q.front(); q.pop();
    136             used[x]=true;
    137             FOREACH_EDGE(e,x,0)
    138             {
    139                 deg[e->in]--;
    140                 if(deg[e->in]==0)
    141                 q.push(e->in);
    142             }
    143         }
    144         
    145         for(int i=0;i<btot;i++)
    146         if(!used[i]) { conf=true; break; }
    147         
    148         if(conf) printf("CONFLICT
    ");
    149         else if(unc) printf("UNCERTAIN
    ");
    150         else printf("OK
    ");
    151         
    152     }
    153     
    154     return 0;
    155 }
    View Code

    POJ 3287

    裸的拓扑标号. 要求优先级.

    做的时候,把边反向,做拓扑排序,然后逆序标号.

    千万想清楚程序在干什么! 这道题是 "对标号进行限制" 以及 "对每个标号进行赋权" 然后 "输出标号的权值".

      1 #include <cstdio>
      2 #include <fstream>
      3 #include <iostream>
      4  
      5 #include <cstdlib>
      6 #include <cstring>
      7 #include <algorithm>
      8 #include <cmath>
      9  
     10 #include <queue>
     11 #include <vector>
     12 #include <map>
     13 #include <set>
     14 #include <stack>
     15 #include <list>
     16  
     17 typedef unsigned int uint;
     18 typedef long long int ll;
     19 typedef unsigned long long int ull;
     20 typedef double db;
     21  
     22 using namespace std;
     23  
     24 inline int getint()
     25 {
     26     int res=0;
     27     char c=getchar();
     28     bool mi=false;
     29     while(c<'0' || c>'9') mi=(c=='-'),c=getchar();
     30     while('0'<=c && c<='9') res=res*10+c-'0',c=getchar();
     31     return mi ? -res : res;
     32 }
     33 inline ll getll()
     34 {
     35     ll res=0;
     36     char c=getchar();
     37     bool mi=false;
     38     while(c<'0' || c>'9') mi=(c=='-'),c=getchar();
     39     while('0'<=c && c<='9') res=res*10+c-'0',c=getchar();
     40     return mi ? -res : res;
     41 }
     42  
     43 db eps=1e-20;
     44 inline bool feq(db a,db b)
     45 { return fabs(a-b)<eps; }
     46 
     47 template<typename Type>
     48 inline Type avg(const Type a,const Type b)
     49 { return a+((b-a)/2); }
     50 
     51 //==========================================================
     52 //==========================================================
     53 //==========================================================
     54 //==========================================================
     55 
     56 
     57 struct edge
     58 {
     59     int in;
     60     edge*nxt;
     61 }pool[40050];
     62 edge*et=pool;
     63 edge*eds[205];
     64 void addedge(int a,int b)
     65 { et->in=b; et->nxt=eds[a]; eds[a]=et++; }
     66 #define FOREACH_EDGE(i,j) for(edge*i=eds[j];i;i=i->nxt)
     67 
     68 
     69 int n,m;
     70 int deg[205];
     71 int label[205];
     72 
     73 int main()
     74 {
     75     int T=getint();
     76     while(T--)
     77     {
     78         n=getint();
     79         m=getint();
     80         
     81         memset(eds,0,sizeof(edge*)*(n+1));
     82         memset(deg,0,sizeof(int)*(n+1));
     83         memset(label,0,sizeof(int)*(n+1));
     84         et=pool;
     85         
     86         int tot=0;
     87         
     88         for(int i=0;i<m;i++)
     89         {
     90             int a=getint()-1;
     91             int b=getint()-1;
     92             addedge(b,a);
     93             deg[a]++;
     94         }
     95         
     96         priority_queue<int> q;
     97         for(int i=0;i<n;i++)
     98         if(deg[i]==0) q.push(i);
     99         
    100         while(!q.empty())
    101         {
    102             int x=q.top(); q.pop();
    103             label[x]=n-(tot++);
    104             FOREACH_EDGE(e,x)
    105             {
    106                 deg[e->in]--;
    107                 if(deg[e->in]==0)
    108                 q.push(e->in);
    109             }
    110         }
    111         
    112         if(tot!=n) printf("-1
    ");
    113         else
    114         {
    115             printf("%d",label[0]);
    116             for(int i=1;i<n;i++)
    117             printf(" %d",label[i]);
    118             printf("
    ");
    119         }
    120     }
    121     
    122     return 0;
    123 }
    View Code

    POJ 1270

    枚举拓扑序并输出.

    首先读入比较坑.....WA掉一次的原因是没排序...题目要求不是按照读入的字典序而是字母字典序.....果断写了个冒泡上去......然后就A了.....

    这个算是拓扑排序么?唉随便吧....

      1 #include <cstdio>
      2 #include <fstream>
      3 #include <iostream>
      4  
      5 #include <cstdlib>
      6 #include <cstring>
      7 #include <algorithm>
      8 #include <cmath>
      9  
     10 #include <queue>
     11 #include <vector>
     12 #include <map>
     13 #include <set>
     14 #include <stack>
     15 #include <list>
     16  
     17 typedef unsigned int uint;
     18 typedef long long int ll;
     19 typedef unsigned long long int ull;
     20 typedef double db;
     21  
     22 using namespace std;
     23  
     24 inline int getint()
     25 {
     26     int res=0;
     27     char c=getchar();
     28     bool mi=false;
     29     while(c<'0' || c>'9') mi=(c=='-'),c=getchar();
     30     while('0'<=c && c<='9') res=res*10+c-'0',c=getchar();
     31     return mi ? -res : res;
     32 }
     33 inline ll getll()
     34 {
     35     ll res=0;
     36     char c=getchar();
     37     bool mi=false;
     38     while(c<'0' || c>'9') mi=(c=='-'),c=getchar();
     39     while('0'<=c && c<='9') res=res*10+c-'0',c=getchar();
     40     return mi ? -res : res;
     41 }
     42 
     43 //==========================================================
     44 //==========================================================
     45 //==========================================================
     46 //==========================================================
     47 
     48 
     49 struct edge
     50 {
     51     int in;
     52     edge*nxt;
     53 }pool[40050];
     54 edge*et=pool;
     55 edge*eds[205];
     56 void addedge(int a,int b)
     57 { et->in=b; et->nxt=eds[a]; eds[a]=et++; }
     58 #define FOREACH_EDGE(i,j) for(edge*i=eds[j];i;i=i->nxt)
     59 
     60 int n,m;
     61 
     62 char inp1[105];
     63 int pos[256];
     64 char inp2[1050];
     65 
     66 int deg[105];
     67 
     68 int cur[105];
     69 bool ins[105];
     70 void DFS(int dep)
     71 {
     72     if(dep==n)
     73     {
     74         for(int i=0;i<n;i++) printf("%c",inp1[cur[i]]);
     75         printf("
    ");
     76         return ;
     77     }
     78     
     79     for(int i=0;i<n;i++)
     80     if(!ins[i] && deg[i]==0)
     81     {
     82         cur[dep]=i;
     83         ins[i]=true;
     84         FOREACH_EDGE(e,i) deg[e->in]--;
     85         DFS(dep+1);
     86         FOREACH_EDGE(e,i) deg[e->in]++;
     87         ins[i]=false;
     88     }
     89 }
     90 
     91 int main()
     92 {
     93     while(true)
     94     {
     95         gets(inp1);
     96         if(feof(stdin)) break;
     97         gets(inp2);
     98         
     99         {
    100             n=0;
    101             int p=0; 
    102             while(inp1[p]!=0)
    103             {
    104                 if('a'<=inp1[p] && inp1[p]<='z') 
    105                 pos[inp1[p]]=n,inp1[n++]=inp1[p];
    106                 p++;
    107             }
    108             
    109             for(int i=0;i<n;i++)
    110             for(int j=i+1;j<n;j++)
    111             if(inp1[i]>inp1[j])
    112             swap(inp1[i],inp1[j]),swap(pos[inp1[i]],pos[inp1[j]]);
    113             
    114         }
    115         
    116         et=pool;
    117         memset(eds,0,sizeof(int)*(n+1));
    118         memset(deg,0,sizeof(int)*(n+1));
    119         
    120         {
    121             int p=0;
    122             int c=0;
    123             char a;
    124             while(inp2[p]!=0)
    125             {
    126                 if('a'<=inp2[p] && inp2[p]<='z')
    127                 {
    128                     if(c==1)
    129                     {
    130                         addedge(pos[a],pos[inp2[p]]);
    131                         deg[pos[inp2[p]]]++;
    132                         c=0;
    133                     }
    134                     else a=inp2[p],c++;
    135                 }
    136                 
    137                 p++;
    138             }
    139         }
    140         
    141         DFS(0);
    142         
    143         printf("
    ");
    144     }
    145     
    146     return 0;
    147 }
    View Code
  • 相关阅读:
    HTML5 Canvas 颜色填充学习
    PHP中使用函数array_merge()合并数组
    div border-radius
    php中数组可以不写下标
    ab apache Benchmarking中链接的写法 记得加上/
    div border-radius画圆
    Why should i use url.openStream instead of of url.getContent?
    Using Java SecurityManager to grant/deny access to system functions
    In Java, what is the default location for newly created files?
    三种纯CSS实现三角形的方法
  • 原文地址:https://www.cnblogs.com/DragoonKiller/p/4451821.html
Copyright © 2011-2022 走看看