zoukankan      html  css  js  c++  java
  • hdu 6430 线段树 暴力维护

    Problem E. TeaTree

    Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)
    Total Submission(s): 722    Accepted Submission(s): 255


    Problem Description
    Recently, TeaTree acquire new knoledge gcd (Greatest Common Divisor), now she want to test you.
    As we know, TeaTree is a tree and her root is node 1, she have n nodes and n-1 edge, for each node i, it has it’s value v[i].
    For every two nodes i and j (i is not equal to j), they will tell their Lowest Common Ancestors (LCA) a number : gcd(v[i],v[j]).
    For each node, you have to calculate the max number that it heard. some definition:
    In graph theory and computer science, the lowest common ancestor (LCA) of two nodes u and v in a tree is the lowest (deepest) node that has both u and v as descendants, where we define each node to be a descendant of itself.
     
    Input
    On the first line, there is a positive integer n, which describe the number of nodes.
    Next line there are n-1 positive integers f[2] ,f[3], …, f[n], f[i] describe the father of node i on tree.
    Next line there are n positive integers v[2] ,v[3], …, v[n], v[i] describe the value of node i.
    n<=100000, f[i]<i, v[i]<=100000
     
    Output
    Your output should include n lines, for i-th line, output the max number that node i heard.
    For the nodes who heard nothing, output -1.
     
    求树上每点的一个值
    这个值 是 该点 以及它的子树所有点的 最大gcd
     
    #include <iostream>
    #include <vector>
    
    #define rep(i,a,b) for(int i=a;i<b;i++)
    #define per(i,a,b) for(int i=a-1;i>=b;i--)
    
    const int MX = 1e5;
    const int MXX = 400*MX;
    using namespace std;
    
    int n;
    
    vector<int> G[MX+5],vv[MX+5];
    
    
    // init函数 实现将i因数分解 (i < 1e5)
    void init() {
        rep(i,1,MX+1) vv[i].push_back(1);
        rep(i,2,MX+1) {
            vv[i].push_back(i);
            for(int j=i+i;j<=MX;j+=i) vv[j].push_back(i);
        } 
    
        // rep(i,1,MX+1) {
        //     rep(j,0,vv[i].size()) {
        //         printf("%d ",vv[i][j]);
        //     }puts("");
        // }
    }
    
    int root[MX+5],ls[MXX],rs[MXX],sum[MXX],rear,ans[MX];
    
    inline void push_up(int rt) {
        if(ls[rt] && rs[rt]) sum[rt] = max(sum[ls[rt]],sum[rs[rt]]);
        else if(ls[rt]) sum[rt] = sum[ls[rt]];
        else if(rs[rt]) sum[rt] = sum[rs[rt]];
    }
    
    void update(int &rt,int l,int r,int p) {
        if(rt==0) rt = ++rear;
        if(l == r) {
            sum[rt] = p;
            return ;
        }
        int m = (l+r)>>1;
        if(p <= m) update(ls[rt],l,m,p);
        else update(rs[rt],m+1,r,p);
        push_up(rt);
    }
    
    int merge(int rt, int prt, int &ans) {
            if(rt==0 || prt==0) return rt^prt;
            //这里维护最大的gcd
            if(sum[rt] == sum[prt]) ans = max(ans,sum[rt]);
            //这里只有有因子,就归并到rt上面
            if(ls[rt] | ls[prt]) ls[rt] = merge(ls[rt], ls[prt], ans);
            if(rs[rt] | rs[prt]) rs[rt] = merge(rs[rt], rs[prt], ans);
            push_up(rt);
            return rt;
    }
    
    void dfs(int u) {
        ans[u] = -1;
        rep(i, 0, G[u].size()) {
            int v = G[u][i];
            dfs(v);
            root[u] = merge(root[u],root[v],ans[u]);
        }
    }
    
    int main () {
        freopen("in.txt" ,"r",stdin);
        freopen("out.txt","w",stdout);
        init();
        
        scanf("%d", &n);
        //建边
        rep(i,2,n+1) {
            int fa; scanf("%d",&fa);
            G[fa].push_back(i);
        }
        //对每个v[i]建线段树
        rear=0;
        rep(i,1,n+1) {
            int x; scanf("%d", &x);
            root[i]=0;
            rep(j, 0, vv[x].size()) {
                update(root[i], 1, MX, vv[x][j]);
            }
        }
        //暴力更新 gcd
        dfs(1);
        //输出答案
        rep(i,1,n+1) printf("%d
    ", ans[i]);
        return 0;
    }
     
  • 相关阅读:
    5种排序算法
    Numpy 基础
    Git 帮助
    SpringBoot巧用 @Async 提升API接口并发能力
    延时队列实现的方式总结
    Spring Boot 进行优雅的字段校验
    分布式搜索引擎Elasticsearch的架构分析
    Redis 使用规范
    Intellij IDEA远程debug线上项目记录
    领域驱动设计:领域接口化设计
  • 原文地址:https://www.cnblogs.com/Draymonder/p/9524241.html
Copyright © 2011-2022 走看看