zoukankan      html  css  js  c++  java
  • hdu 1074 Doing Homework

    Doing Homework

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 12397    Accepted Submission(s): 5976


    Problem Description
    Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Every teacher gives him a deadline of handing in the homework. If Ignatius hands in the homework after the deadline, the teacher will reduce his score of the final test, 1 day for 1 point. And as you know, doing homework always takes a long time. So Ignatius wants you to help him to arrange the order of doing homework to minimize the reduced score.
     
    Input
    The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
    Each test case start with a positive integer N(1<=N<=15) which indicate the number of homework. Then N lines follow. Each line contains a string S(the subject's name, each string will at most has 100 characters) and two integers D(the deadline of the subject), C(how many days will it take Ignatius to finish this subject's homework). 

    Note: All the subject names are given in the alphabet increasing order. So you may process the problem much easier.
     
    Output
    For each test case, you should output the smallest total reduced score, then give out the order of the subjects, one subject in a line. If there are more than one orders, you should output the alphabet smallest one.
     
     
     
     用time[i] 来表示i的二进制位为1的作业所构成的集合完作业所需要 的时间
     用dp[i] 来表示i的二进制位为1的作业所构成的集合完作业所扣的最少分数
    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <string.h>
    #include <string>
    #include <stack>
    using namespace std;
    
    const int N = (1<<15)+10;
    
    int n, ddl[20], ti[20];
    string str[20];
    int dp[N], tim[N], pre[N], now[N];
    
    int main()
    {
        //freopen("in","r",stdin);
        int T; scanf("%d",&T);
        while(T--) {
            scanf("%d", &n);
            for(int i=0;i<n;i++) {
                cin >> str[i];
                scanf("%d %d", &ddl[i], &ti[i]);
            }
            memset(dp,0x3f,sizeof(dp));
            memset(tim,0,sizeof(tim));
            memset(pre,0,sizeof(pre));
            memset(now,0,sizeof(now));
            int end = (1<<n);
            dp[0] = 0;
            for(int s=1; s<end; s++) {
                for(int i=0; i<n; i++) {
                    if((s>>i)&1) {
                        int preState = s - (1<<i);
                        int ans = max(0, tim[preState] + ti[i] - ddl[i]);
                        if(dp[preState] + ans <=  dp[s]) {
                            dp[s] = dp[preState] + ans;
                            tim[s] = tim[preState] + ti[i];
                            now[s] = i;
                            pre[s] = preState;
                        } 
                    }    
                }
            }
            stack<int> st;
            int ed = (1<<n)-1;
            while (ed != 0) {
                st.push(now[ed]);
                ed = pre[ed];
            }
            cout << dp[end-1] <<endl;
            while (!st.empty()) {
                cout << str[st.top()]<<endl;
                st.pop();
            }
        }
        return 0;
    }
  • 相关阅读:
    从0开始的Python学习013编写一个Python脚本
    Spring Cloud Eureka基本概述
    RocketMQ入门案例
    Quartz使用记录总结
    Spring Boot 1.5升级2.1 主要问题汇总
    Eureka客户端注册多网卡下IP选择问题
    Spring Security之动态配置资源权限
    代码规范问题
    Spring Security + OAuth系统环境搭建(一)
    Java并发编程之AQS
  • 原文地址:https://www.cnblogs.com/Draymonder/p/9760530.html
Copyright © 2011-2022 走看看