zoukankan      html  css  js  c++  java
  • C

    Recently Luba bought a monitor. Monitor is a rectangular matrix of size n × m. But then she started to notice that some pixels cease to work properly. Luba thinks that the monitor will become broken the first moment when it contains a square k × k consisting entirely of broken pixels. She knows that q pixels are already broken, and for each of them she knows the moment when it stopped working. Help Luba to determine when the monitor became broken (or tell that it's still not broken even after all q pixels stopped working).

    Input

    The first line contains four integer numbers n, m, k, q (1 ≤ n, m ≤ 500, 1 ≤ k ≤ min(n, m), 0 ≤ q ≤ n·m) — the length and width of the monitor, the size of a rectangle such that the monitor is broken if there is a broken rectangle with this size, and the number of broken pixels.

    Each of next q lines contain three integer numbers xi, yi, ti (1 ≤ xi ≤ n, 1 ≤ yi ≤ m, 0 ≤ t ≤ 109) — coordinates of i-th broken pixel (its row and column in matrix) and the moment it stopped working. Each pixel is listed at most once.

    We consider that pixel is already broken at moment ti.

    Output

    Print one number — the minimum moment the monitor became broken, or "-1" if it's still not broken after these q pixels stopped working.

    Examples

    Input
    2 3 2 5
    2 1 8
    2 2 8
    1 2 1
    1 3 4
    2 3 2
    Output
    8
    Input
    3 3 2 5
    1 2 2
    2 2 1
    2 3 5
    3 2 10
    2 1 100
    Output
    -1
    思路:二分时间或者二分会被毁坏的像素点数量也可以吧,后者虽然没写但是我觉得可以。
      然后运用二维前缀和,来查找是否存在k*k的像素缺口。
    关于二维前缀和 https://blog.csdn.net/yzyyylx/article/details/78298318

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const int P = 998244353;
    const int inf = 0x3f3f3f3f;
    const int maxn = 500030;
    struct node{
        ll x,y;
        ll t;
    }pos[maxn];
    ll n,m,k,q;
    ll mp[510][510];
    ll a[510][510],b[510][510];
    int cmp(struct node & a, struct node & b){
        return a.t<b.t;
    }
    
    int check(ll rr){
        memset(a,0,sizeof(a));
        memset(b,0,sizeof(b));
        for(int i = 1; pos[i].t<= rr&&i <= q ; i++){
            a[pos[i].x][pos[i].y] = 1;
        }
        for(int i = 1; i <= n ; i++){
            for(int j = 1 ; j <= m ; j++){
                b[i][j] = b[i-1][j]+b[i][j-1]-b[i-1][j-1]+a[i][j];
            }
        }
        for(int i = k ; i <= n ; i++){
            for(int j = k; j <= m ; j++){
                if(b[i][j]+b[i-k][j-k]-b[i-k][j]-b[i][j-k] == k*k) return 1;
            }
        }
        return 0;
    }
    
    ll ans = -1;
    ll Min = 1e10,Max = -1;
    
    int main(){
        memset(mp,-1,sizeof(mp));
        scanf("%lld %lld %lld %lld",&n,&m,&k,&q);
        for(int i = 1; i <= q ; i++){
            scanf("%lld %lld %lld",&pos[i].x,&pos[i].y,&pos[i].t);
            mp[pos[i].x][pos[i].y] = pos[i].t;
            Min = min(Min,pos[i].t);
            Max = max(Max,pos[i].t);
        }
        sort(pos + 1 , pos + 1 + q ,cmp);
        ll l = Min , r = Max + 1;
        while(r - l > 0){
            ll mid = (r + l)/2;
            if(check(mid)){
                ans = mid;
                r = mid;
            }else{
                l = mid + 1;
            }
        }
        printf("%lld
    ",ans);
        return 0;
    }
    View Code

    一个从很久以前就开始做的梦。

  • 相关阅读:
    学习Mybatis中的一对多表关联
    学习Mybatis中的一对一表关联
    学习Mybatis中的动态sql
    学习Mybatis中的约定大于配置、数据库配置优化、定义别名、类型处理器、resultMap和parameterType
    第八周进度
    构建之法阅读笔记07
    正则表达式
    梦断代码之阅读笔记02
    顶会热词统计
    本周进度
  • 原文地址:https://www.cnblogs.com/DreamACMer/p/11182713.html
Copyright © 2011-2022 走看看