zoukankan      html  css  js  c++  java
  • Tug of War POJ 2576 DP(类似背包)

    Tug of War
    Time Limit: 3000MS   Memory Limit: 65536K
    Total Submissions: 8085   Accepted: 2174

    Description

    A tug of war is to be arranged at the local office picnic. For the tug of war, the picnickers must be divided into two teams. Each person must be on one team or the other; the number of people on the two teams must not differ by more than 1; the total weight of the people on each team should be as nearly equal as possible.

    Input

    The first line of input contains n the number of people at the picnic. n lines follow. The first line gives the weight of person 1; the second the weight of person 2; and so on. Each weight is an integer between 1 and 450. There are at most 100 people at the picnic.

    Output

    Your output will be a single line containing 2 numbers: the total weight of the people on one team, and the total weight of the people on the other team. If these numbers differ, give the lesser first.

    Sample Input

    3
    100
    90
    200
    

    Sample Output

    190 200
    

    Source

    /*
     * Author:  
     * Created Time:  2013/10/14 22:43:39
     * File Name: A.cpp
     * solve: A.cpp
     */
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<cmath>
    #include<algorithm>
    #include<string>
    #include<map>
    #include<stack>
    #include<set>
    #include<iostream>
    #include<vector>
    #include<queue>
    //ios_base::sync_with_stdio(false);
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    
    using namespace std;
    #define sz(v) ((int)(v).size())
    #define rep(i, a, b) for (int i = (a); i < (b); ++i)
    #define repf(i, a, b) for (int i = (a); i <= (b); ++i)
    #define repd(i, a, b) for (int i = (a); i >= (b); --i)
    #define clr(x) memset(x,0,sizeof(x))
    #define clrs( x , y ) memset(x,y,sizeof(x))
    #define out(x) printf(#x" %d
    ", x)
    #define sqr(x) ((x) * (x))
    typedef long long LL;
    
    const int INF = 1000000000;
    const double eps = 1e-8;
    const int maxn = 300;
    
    int sgn(const double &x) {  return (x > eps) - (x < -eps); }
    int num[maxn];
    int dp[100+1][450*100+10];//dp[i][j]代表能否用i个数组成j
    int main() 
    {
        //freopen("in.txt","r",stdin);
    
    
        int n;
        while(scanf("%d",&n)==1)
        {
            int sum = 0;
            repf(i,1,n)
            {
                scanf("%d",&num[i]);
                sum += num[i];
            }        
            clr(dp);
    
            dp[0][0] = 1;
    
            int N = (n+1)/2; 
            repf(i,1,n)
            {
                repd(j,sum/2,0)
                    repd(k,N,1)
                    {
                        if(j>=num[i])
                        {
                            if(dp[k - 1][j - num[i]] == 1)
                                dp[k][j] = 1;
                        }
                    }
            }
    
    
            int ans;
            repd(i,sum/2,0)
            {
                if(n%2 == 0)
                {
                    if(dp[n/2][i] == 1)
                    {
                        ans = i;
                        break;
                    }
                }else
                {
                    if(dp[n/2][i] == 1 || dp[n/2 + 1][i] == 1)
                    {
                        ans = i;
                        break;
                    }
                }
            }
    
            cout<<min(ans,sum-ans)<<" "<<max(ans,sum - ans)<<endl;
        }
        return 0;
    }
    /*
     * Author:  
     * Created Time:  2013/10/14 22:43:39
     * File Name: A.cpp
     * solve: A.cpp
     */
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<cmath>
    #include<algorithm>
    #include<string>
    #include<map>
    #include<stack>
    #include<set>
    #include<iostream>
    #include<vector>
    #include<queue>
    //ios_base::sync_with_stdio(false);
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    
    using namespace std;
    #define sz(v) ((int)(v).size())
    #define rep(i, a, b) for (int i = (a); i < (b); ++i)
    #define repf(i, a, b) for (int i = (a); i <= (b); ++i)
    #define repd(i, a, b) for (int i = (a); i >= (b); --i)
    #define clr(x) memset(x,0,sizeof(x))
    #define clrs( x , y ) memset(x,y,sizeof(x))
    #define out(x) printf(#x" %d
    ", x)
    #define sqr(x) ((x) * (x))
    typedef long long LL;
    
    const int INF = 1000000000;
    const double eps = 1e-8;
    const int maxn = 300;
    
    int sgn(const double &x) {  return (x > eps) - (x < -eps); }
    int num[maxn];
    int dp[100+1][450*100+10];//dp[i][j]代表能否用i个数组成j
    int main() 
    {
        //freopen("in.txt","r",stdin);
    
    
        int n;
        while(scanf("%d",&n)==1)
        {
            int sum = 0;
            repf(i,1,n)
            {
                scanf("%d",&num[i]);
                sum += num[i];
            }        
            clr(dp);
    
            dp[0][0] = 1;
    
            int N = (n+1)/2; 
            repf(i,1,n)
            {
                repf(j,0,sum/2)
                    repf(k,0,N)
                    {
                        if(dp[k][j] == 1)
                        {
                            if(j+num[i] <= sum/2)
                            {
                                dp[k+1][j+num[i]] = 1;
                            }
                        }
    
                    }
            }
    
    
            int ans;
            repd(i,sum/2,0)
            {
                if(n%2 == 0)
                {
                    if(dp[n/2][i] == 1)
                    {
                        ans = i;
                        break;
                    }
                }else
                {
                    if(dp[n/2][i] == 1 || dp[n/2 + 1][i] == 1)
                    {
                        ans = i;
                        break;
                    }
                }
            }
    
            cout<<min(ans,sum-ans)<<" "<<max(ans,sum - ans)<<endl;
        }
        return 0;
    }
  • 相关阅读:
    敏感性分析与风险分析
    深入理解PHP之foreach
    PHP上传文件到七牛(Qiniu)
    Swoft 新手向教程
    HP下kafka的实践
    关于BOOTSTRAP的整理和理解
    win10 ubuntu 子系统安装php
    CentOS7 安装 PHP7.2
    PHP 锁机制
    深入理解PHP之strpos
  • 原文地址:https://www.cnblogs.com/DreamHighWithMe/p/3370471.html
Copyright © 2011-2022 走看看