zoukankan      html  css  js  c++  java
  • Task1-机器学习算法基础

    ·损失函数:单一样本预测错误程度————越小越好
    ·代价函数:全部样本集的平均误差
    目标函数:代价函数、正则化函数,最终优化者

    设定目标函数的原因:代价函数可以度量全部样本集的平均误差。模型过大,预测测试集会出现过拟合。

    练习

     1 #os.environ["CUDA_VISIBLE_DEVICES"] = "1"
     2 #生成数据
     3 import numpy as np
     4 #生成随机数
     5 np.random.seed(1234)
     6 x = np.random.rand(500,3)
     7 #构建映射关系时,模拟真实的数据待预测值,映射关系为:y=4.2+5.7*x1+10.8*x2,可自行设置值进行尝试
     8 y = x.dot(np.array([4.2,5.7,10.8]))
     9 #lr = sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=1)
    10 from sklearn.linear_model import LinearRegression
    11 import matplotlib.pyplot as plt
    12 #% matplotlib inline
    13 #sklearn模型
    14 #调用模型
    15 lr = LinearRegression(fit_intercept=True)
    16 #训练模型
    17 lr.fit(x,y)
    18 print("估计参数为:%s" %(lr.coef_))
    19 #计算R平方
    20 print('R2:%s' %(lr.score(x,y)))
    21 #任意设定变量,预测目标值
    22 x_test = np.array([2,4,5]).reshape(1,-1)
    23 y_hat = lr.predict(x_test)
    24 print("预测值为:%s" %(y_hat))
    25 #===========================
    26 #==========================
    27 #最小二乘法矩阵模型
    28 class LR_LS():
    29     def __init__(self):
    30         self.w = None
    31     def fit(self, X, y):
    32         # 最小二乘法矩阵求解
    33         #============================= show me your code =======================
    34         self.w = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)
    35         #============================= show me your code =======================
    36     def predict(self, X):
    37         # 用已经拟合的参数值预测新自变量
    38         #============================= show me your code =======================
    39         y_pred = X.dot(self.w)
    40         #============================= show me your code =======================
    41         return y_pred
    42 
    43 if __name__ == "__main__":
    44     lr_ls = LR_LS()
    45     lr_ls.fit(x,y)
    46     print("估计的参数值:%s" %(lr_ls.w))
    47     x_test = np.array([2,4,5]).reshape(1,-1)
    48     print("预测值为: %s" %(lr_ls.predict(x_test)))
    49 
    50 #梯度下降模型
    51 class LR_GD():
    52     def __init__(self):
    53         self.w = None
    54     def fit(self,X,y,alpha=0.02,loss = 1e-10): # 设定步长为0.002,判断是否收敛的条件为1e-10
    55         y = y.reshape(-1,1) #重塑y值的维度以便矩阵运算
    56         [m,d] = np.shape(X) #自变量的维度
    57         self.w = np.zeros((d)) #将参数的初始值定为0
    58         tol = 1e5
    59         #============================= show me your code =======================
    60         while tol > loss:
    61             h_f = X.dot(self.w).reshape(-1,1)
    62             theta = self.w + alpha*np.mean(X*(y - h_f),axis=0) #计算迭代的参数值
    63             tol = np.sum(np.abs(theta - self.w))
    64             self.w = theta
    65         #============================= show me your code =======================
    66     def predict(self, X):
    67         # 用已经拟合的参数值预测新自变量
    68         y_pred = X.dot(self.w)
    69         return y_pred
    70 
    71 if __name__ == "__main__":
    72     lr_gd = LR_GD()
    73     lr_gd.fit(x,y)
    74     print("估计的参数值为:%s" %(lr_gd.w))
    75     x_test = np.array([2,4,5]).reshape(1,-1)
    76     print("预测值为:%s" %(lr_gd.predict(x_test)))

    #os.environ["CUDA_VISIBLE_DEVICES"] = "1"
    #生成数据
    import numpy as np
    #生成随机数
    np.random.seed(1234)
    x = np.random.rand(500,3)
    #构建映射关系时,模拟真实的数据待预测值,映射关系为:y=4.2+5.7*x1+10.8*x2,可自行设置值进行尝试
    y = x.dot(np.array([4.2,5.7,10.8]))
    #lr = sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=1)
    from sklearn.linear_model import LinearRegression
    import matplotlib.pyplot as plt
    #% matplotlib inline
    #sklearn模型
    #调用模型
    lr = LinearRegression(fit_intercept=True)
    #训练模型
    lr.fit(x,y)
    print("估计参数为:%s" %(lr.coef_))
    #计算R平方
    print('R2:%s' %(lr.score(x,y)))
    #任意设定变量,预测目标值
    x_test = np.array([2,4,5]).reshape(1,-1)
    y_hat = lr.predict(x_test)
    print("预测值为:%s" %(y_hat))
    #===========================
    #==========================
    #最小二乘法矩阵模型
    class LR_LS():
    def __init__(self):
    self.w = None
    def fit(self, X, y):
    # 最小二乘法矩阵求解
    #============================= show me your code =======================
    self.w = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)
    #============================= show me your code =======================
    def predict(self, X):
    # 用已经拟合的参数值预测新自变量
    #============================= show me your code =======================
    y_pred = X.dot(self.w)
    #============================= show me your code =======================
    return y_pred

    if __name__ == "__main__":
    lr_ls = LR_LS()
    lr_ls.fit(x,y)
    print("估计的参数值:%s" %(lr_ls.w))
    x_test = np.array([2,4,5]).reshape(1,-1)
    print("预测值为: %s" %(lr_ls.predict(x_test)))

    #梯度下降模型
    class LR_GD():
    def __init__(self):
    self.w = None
    def fit(self,X,y,alpha=0.02,loss = 1e-10): # 设定步长为0.002,判断是否收敛的条件为1e-10
    y = y.reshape(-1,1) #重塑y值的维度以便矩阵运算
    [m,d] = np.shape(X) #自变量的维度
    self.w = np.zeros((d)) #将参数的初始值定为0
    tol = 1e5
    #============================= show me your code =======================
    while tol > loss:
    h_f = X.dot(self.w).reshape(-1,1)
    theta = self.w + alpha*np.mean(X*(y - h_f),axis=0) #计算迭代的参数值
    tol = np.sum(np.abs(theta - self.w))
    self.w = theta
    #============================= show me your code =======================
    def predict(self, X):
    # 用已经拟合的参数值预测新自变量
    y_pred = X.dot(self.w)
    return y_pred

    if __name__ == "__main__":
    lr_gd = LR_GD()
    lr_gd.fit(x,y)
    print("估计的参数值为:%s" %(lr_gd.w))
    x_test = np.array([2,4,5]).reshape(1,-1)
    print("预测值为:%s" %(lr_gd.predict(x_test)))
  • 相关阅读:
    华为云-Centos7.6-部署elasticSearch7.7
    linux下安装nginx
    Redis5.0.8集群安装
    redis5.0.8单机安装
    Mybatis打印SQL
    PostgreSQL新手教程
    Debian install jdk7
    Debian install jre7
    Debian /etc/apt/sources.list
    安装J2EE的SDK报错:could not find the required version of the Java(TM)2 Runtime Environment in '(null)'的解决办法。
  • 原文地址:https://www.cnblogs.com/Dreamer-Jie/p/12743894.html
Copyright © 2011-2022 走看看