zoukankan      html  css  js  c++  java
  • 【深度学习 TPU、tensorflow】kaggle竞赛 使用TPU对104种花朵进行分类 第一次尝试 40%准确率

    前言

    张量处理单元(TPU)现在可在Kaggle上使用

    张量处理单元(TPU)配额现在可以在Kaggle上使用,无需您付费!

    TPU是专门用于深度学习任务的强大硬件加速器。它们由Google开发(并首次使用)来处理大型图像数据库,例如从街景视图中提取所有文本。这项比赛是为您尝试TPU而设计的。

    最新的Tensorflow版本(TF 2.1)专注于TPU,现在在使用自定义训练循环的模型中,它们都通过Keras高级API和较低级别得到支持。

    我们迫不及待地想看看TPU如何加速您的解决方案!

    挑战

    很难理解我们自然世界的广阔和多样性。

    这里有5,000多种哺乳动物,10,000多种鸟类,30,000多种鱼类,而且惊人地有400,000多种不同类型的花。

    在这场比赛中,您面临的挑战是建立一个机器学习模型,该模型可识别图像数据集中的花朵类型(为简单起见,我们坚持使用100多种类型的花朵)。

    Getting started with 100+ flowers on TPU

    import math, re, os
    import tensorflow as tf
    import numpy as np
    from matplotlib import pyplot as plt
    from kaggle_datasets import KaggleDatasets
    from sklearn.metrics import f1_score, precision_score, recall_score, confusion_matrix
    print("Tensorflow version " + tf.__version__)
    AUTO = tf.data.experimental.AUTOTUNE
    

    TPU or GPU detection

    # Detect hardware, return appropriate distribution strategy
    try:
        tpu = tf.distribute.cluster_resolver.TPUClusterResolver()  # TPU detection. No parameters necessary if TPU_NAME environment variable is set. On Kaggle this is always the case.
        print('Running on TPU ', tpu.master())
    except ValueError:
        tpu = None
    
    if tpu:
        tf.config.experimental_connect_to_cluster(tpu)
        tf.tpu.experimental.initialize_tpu_system(tpu)
        strategy = tf.distribute.experimental.TPUStrategy(tpu)
    else:
        strategy = tf.distribute.get_strategy() # default distribution strategy in Tensorflow. Works on CPU and single GPU.
    
    print("REPLICAS: ", strategy.num_replicas_in_sync)
    

    Competition data access

    TPUs read data directly from Google Cloud Storage (GCS). This Kaggle utility will copy the dataset to a GCS bucket co-located with the TPU. If you have multiple datasets attached to the notebook, you can pass the name of a specific dataset to the get_gcs_path function. The name of the dataset is the name of the directory it is mounted in. Use !ls /kaggle/input/ to list attached datasets.

    GCS_DS_PATH = KaggleDatasets().get_gcs_path() # you can list the bucket with "!gsutil ls $GCS_DS_PATH"
    

    Configuration

    IMAGE_SIZE = [512, 512] # At this size, a GPU will run out of memory. Use the TPU.
                            # For GPU training, please select 224 x 224 px image size.
    EPOCHS = 12
    BATCH_SIZE = 16 * strategy.num_replicas_in_sync
    
    GCS_PATH_SELECT = { # available image sizes
        192: GCS_DS_PATH + '/tfrecords-jpeg-192x192',
        224: GCS_DS_PATH + '/tfrecords-jpeg-224x224',
        331: GCS_DS_PATH + '/tfrecords-jpeg-331x331',
        512: GCS_DS_PATH + '/tfrecords-jpeg-512x512'
    }
    GCS_PATH = GCS_PATH_SELECT[IMAGE_SIZE[0]]
    
    TRAINING_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/train/*.tfrec')
    VALIDATION_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/val/*.tfrec')
    TEST_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/test/*.tfrec') # predictions on this dataset should be submitted for the competition
    
    CLASSES = ['pink primrose',    'hard-leaved pocket orchid', 'canterbury bells', 'sweet pea',     'wild geranium',     'tiger lily',           'moon orchid',              'bird of paradise', 'monkshood',        'globe thistle',         # 00 - 09
               'snapdragon',       "colt's foot",               'king protea',      'spear thistle', 'yellow iris',       'globe-flower',         'purple coneflower',        'peruvian lily',    'balloon flower',   'giant white arum lily', # 10 - 19
               'fire lily',        'pincushion flower',         'fritillary',       'red ginger',    'grape hyacinth',    'corn poppy',           'prince of wales feathers', 'stemless gentian', 'artichoke',        'sweet william',         # 20 - 29
               'carnation',        'garden phlox',              'love in the mist', 'cosmos',        'alpine sea holly',  'ruby-lipped cattleya', 'cape flower',              'great masterwort', 'siam tulip',       'lenten rose',           # 30 - 39
               'barberton daisy',  'daffodil',                  'sword lily',       'poinsettia',    'bolero deep blue',  'wallflower',           'marigold',                 'buttercup',        'daisy',            'common dandelion',      # 40 - 49
               'petunia',          'wild pansy',                'primula',          'sunflower',     'lilac hibiscus',    'bishop of llandaff',   'gaura',                    'geranium',         'orange dahlia',    'pink-yellow dahlia',    # 50 - 59
               'cautleya spicata', 'japanese anemone',          'black-eyed susan', 'silverbush',    'californian poppy', 'osteospermum',         'spring crocus',            'iris',             'windflower',       'tree poppy',            # 60 - 69
               'gazania',          'azalea',                    'water lily',       'rose',          'thorn apple',       'morning glory',        'passion flower',           'lotus',            'toad lily',        'anthurium',             # 70 - 79
               'frangipani',       'clematis',                  'hibiscus',         'columbine',     'desert-rose',       'tree mallow',          'magnolia',                 'cyclamen ',        'watercress',       'canna lily',            # 80 - 89
               'hippeastrum ',     'bee balm',                  'pink quill',       'foxglove',      'bougainvillea',     'camellia',             'mallow',                   'mexican petunia',  'bromelia',         'blanket flower',        # 90 - 99
               'trumpet creeper',  'blackberry lily',           'common tulip',     'wild rose']                                                                                                                                               # 100 - 102
    

    Visualization utilities

    data -> pixels, nothing of much interest for the machine learning practitioner in this section.

    # numpy and matplotlib defaults
    np.set_printoptions(threshold=15, linewidth=80)
    
    def batch_to_numpy_images_and_labels(data):
        images, labels = data
        numpy_images = images.numpy()
        numpy_labels = labels.numpy()
        if numpy_labels.dtype == object: # binary string in this case, these are image ID strings
            numpy_labels = [None for _ in enumerate(numpy_images)]
        # If no labels, only image IDs, return None for labels (this is the case for test data)
        return numpy_images, numpy_labels
    
    def title_from_label_and_target(label, correct_label):
        if correct_label is None:
            return CLASSES[label], True
        correct = (label == correct_label)
        return "{} [{}{}{}]".format(CLASSES[label], 'OK' if correct else 'NO', u"u2192" if not correct else '',
                                    CLASSES[correct_label] if not correct else ''), correct
    
    def display_one_flower(image, title, subplot, red=False, titlesize=16):
        plt.subplot(*subplot)
        plt.axis('off')
        plt.imshow(image)
        if len(title) > 0:
            plt.title(title, fontsize=int(titlesize) if not red else int(titlesize/1.2), color='red' if red else 'black', fontdict={'verticalalignment':'center'}, pad=int(titlesize/1.5))
        return (subplot[0], subplot[1], subplot[2]+1)
        
    def display_batch_of_images(databatch, predictions=None):
        """This will work with:
        display_batch_of_images(images)
        display_batch_of_images(images, predictions)
        display_batch_of_images((images, labels))
        display_batch_of_images((images, labels), predictions)
        """
        # data
        images, labels = batch_to_numpy_images_and_labels(databatch)
        if labels is None:
            labels = [None for _ in enumerate(images)]
            
        # auto-squaring: this will drop data that does not fit into square or square-ish rectangle
        rows = int(math.sqrt(len(images)))
        cols = len(images)//rows
            
        # size and spacing
        FIGSIZE = 13.0
        SPACING = 0.1
        subplot=(rows,cols,1)
        if rows < cols:
            plt.figure(figsize=(FIGSIZE,FIGSIZE/cols*rows))
        else:
            plt.figure(figsize=(FIGSIZE/rows*cols,FIGSIZE))
        
        # display
        for i, (image, label) in enumerate(zip(images[:rows*cols], labels[:rows*cols])):
            title = '' if label is None else CLASSES[label]
            correct = True
            if predictions is not None:
                title, correct = title_from_label_and_target(predictions[i], label)
            dynamic_titlesize = FIGSIZE*SPACING/max(rows,cols)*40+3 # magic formula tested to work from 1x1 to 10x10 images
            subplot = display_one_flower(image, title, subplot, not correct, titlesize=dynamic_titlesize)
        
        #layout
        plt.tight_layout()
        if label is None and predictions is None:
            plt.subplots_adjust(wspace=0, hspace=0)
        else:
            plt.subplots_adjust(wspace=SPACING, hspace=SPACING)
        plt.show()
    
    def display_confusion_matrix(cmat, score, precision, recall):
        plt.figure(figsize=(15,15))
        ax = plt.gca()
        ax.matshow(cmat, cmap='Reds')
        ax.set_xticks(range(len(CLASSES)))
        ax.set_xticklabels(CLASSES, fontdict={'fontsize': 7})
        plt.setp(ax.get_xticklabels(), rotation=45, ha="left", rotation_mode="anchor")
        ax.set_yticks(range(len(CLASSES)))
        ax.set_yticklabels(CLASSES, fontdict={'fontsize': 7})
        plt.setp(ax.get_yticklabels(), rotation=45, ha="right", rotation_mode="anchor")
        titlestring = ""
        if score is not None:
            titlestring += 'f1 = {:.3f} '.format(score)
        if precision is not None:
            titlestring += '
    precision = {:.3f} '.format(precision)
        if recall is not None:
            titlestring += '
    recall = {:.3f} '.format(recall)
        if len(titlestring) > 0:
            ax.text(101, 1, titlestring, fontdict={'fontsize': 18, 'horizontalalignment':'right', 'verticalalignment':'top', 'color':'#804040'})
        plt.show()
        
    def display_training_curves(training, validation, title, subplot):
        if subplot%10==1: # set up the subplots on the first call
            plt.subplots(figsize=(10,10), facecolor='#F0F0F0')
            plt.tight_layout()
        ax = plt.subplot(subplot)
        ax.set_facecolor('#F8F8F8')
        ax.plot(training)
        ax.plot(validation)
        ax.set_title('model '+ title)
        ax.set_ylabel(title)
        #ax.set_ylim(0.28,1.05)
        ax.set_xlabel('epoch')
        ax.legend(['train', 'valid.'])
    

    Datasets

    def decode_image(image_data):
        image = tf.image.decode_jpeg(image_data, channels=3)
        image = tf.cast(image, tf.float32) / 255.0  # convert image to floats in [0, 1] range
        image = tf.reshape(image, [*IMAGE_SIZE, 3]) # explicit size needed for TPU
        return image
    
    def read_labeled_tfrecord(example):
        LABELED_TFREC_FORMAT = {
            "image": tf.io.FixedLenFeature([], tf.string), # tf.string means bytestring
            "class": tf.io.FixedLenFeature([], tf.int64),  # shape [] means single element
        }
        example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT)
        image = decode_image(example['image'])
        label = tf.cast(example['class'], tf.int32)
        return image, label # returns a dataset of (image, label) pairs
    
    def read_unlabeled_tfrecord(example):
        UNLABELED_TFREC_FORMAT = {
            "image": tf.io.FixedLenFeature([], tf.string), # tf.string means bytestring
            "id": tf.io.FixedLenFeature([], tf.string),  # shape [] means single element
            # class is missing, this competitions's challenge is to predict flower classes for the test dataset
        }
        example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT)
        image = decode_image(example['image'])
        idnum = example['id']
        return image, idnum # returns a dataset of image(s)
    
    def load_dataset(filenames, labeled=True, ordered=False):
        # Read from TFRecords. For optimal performance, reading from multiple files at once and
        # disregarding data order. Order does not matter since we will be shuffling the data anyway.
    
        ignore_order = tf.data.Options()
        if not ordered:
            ignore_order.experimental_deterministic = False # disable order, increase speed
    
        dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=AUTO) # automatically interleaves reads from multiple files
        dataset = dataset.with_options(ignore_order) # uses data as soon as it streams in, rather than in its original order
        dataset = dataset.map(read_labeled_tfrecord if labeled else read_unlabeled_tfrecord, num_parallel_calls=AUTO)
        # returns a dataset of (image, label) pairs if labeled=True or (image, id) pairs if labeled=False
        return dataset
    
    def data_augment(image, label):
        # data augmentation. Thanks to the dataset.prefetch(AUTO) statement in the next function (below),
        # this happens essentially for free on TPU. Data pipeline code is executed on the "CPU" part
        # of the TPU while the TPU itself is computing gradients.
        image = tf.image.random_flip_left_right(image)
        #image = tf.image.random_saturation(image, 0, 2)
        return image, label   
    
    def get_training_dataset():
        dataset = load_dataset(TRAINING_FILENAMES, labeled=True)
        dataset = dataset.map(data_augment, num_parallel_calls=AUTO)
        dataset = dataset.repeat() # the training dataset must repeat for several epochs
        dataset = dataset.shuffle(2048)
        dataset = dataset.batch(BATCH_SIZE)
        dataset = dataset.prefetch(AUTO) # prefetch next batch while training (autotune prefetch buffer size)
        return dataset
    
    def get_validation_dataset(ordered=False):
        dataset = load_dataset(VALIDATION_FILENAMES, labeled=True, ordered=ordered)
        dataset = dataset.batch(BATCH_SIZE)
        dataset = dataset.cache()
        dataset = dataset.prefetch(AUTO) # prefetch next batch while training (autotune prefetch buffer size)
        return dataset
    
    def get_test_dataset(ordered=False):
        dataset = load_dataset(TEST_FILENAMES, labeled=False, ordered=ordered)
        dataset = dataset.batch(BATCH_SIZE)
        dataset = dataset.prefetch(AUTO) # prefetch next batch while training (autotune prefetch buffer size)
        return dataset
    
    def count_data_items(filenames):
        # the number of data items is written in the name of the .tfrec files, i.e. flowers00-230.tfrec = 230 data items
        n = [int(re.compile(r"-([0-9]*).").search(filename).group(1)) for filename in filenames]
        return np.sum(n)
    
    NUM_TRAINING_IMAGES = count_data_items(TRAINING_FILENAMES)
    NUM_VALIDATION_IMAGES = count_data_items(VALIDATION_FILENAMES)
    NUM_TEST_IMAGES = count_data_items(TEST_FILENAMES)
    STEPS_PER_EPOCH = NUM_TRAINING_IMAGES // BATCH_SIZE
    print('Dataset: {} training images, {} validation images, {} unlabeled test images'.format(NUM_TRAINING_IMAGES, NUM_VALIDATION_IMAGES, NUM_TEST_IMAGES))
    

    Dataset visualizations

    # data dump
    print("Training data shapes:")
    for image, label in get_training_dataset().take(3):
        print(image.numpy().shape, label.numpy().shape)
    print("Training data label examples:", label.numpy())
    print("Validation data shapes:")
    for image, label in get_validation_dataset().take(3):
        print(image.numpy().shape, label.numpy().shape)
    print("Validation data label examples:", label.numpy())
    print("Test data shapes:")
    for image, idnum in get_test_dataset().take(3):
        print(image.numpy().shape, idnum.numpy().shape)
    print("Test data IDs:", idnum.numpy().astype('U')) # U=unicode string
    
    # Peek at training data
    training_dataset = get_training_dataset()
    training_dataset = training_dataset.unbatch().batch(20)
    train_batch = iter(training_dataset)
    
    # run this cell again for next set of images
    display_batch_of_images(next(train_batch))
    

    在这里插入图片描述

    # peer at test data
    test_dataset = get_test_dataset()
    test_dataset = test_dataset.unbatch().batch(20)
    test_batch = iter(test_dataset)
    
    # run this cell again for next set of images
    display_batch_of_images(next(test_batch))
    

    在这里插入图片描述

    Model

    Not the best but it converges …

    with strategy.scope():
        #pretrained_model = tf.keras.applications.DenseNet201(weights='imagenet', include_top=False ,input_shape=[*IMAGE_SIZE, 3])
        #pretrained_model = tf.keras.applications.Xception(weights='imagenet', include_top=False ,input_shape=[*IMAGE_SIZE, 3])
        pretrained_model = tf.keras.applications.VGG16(weights='imagenet', include_top=False ,input_shape=[*IMAGE_SIZE, 3])
        pretrained_model.trainable = False # False = transfer learning, True = fine-tuning
        
        model = tf.keras.Sequential([
            pretrained_model,
            tf.keras.layers.GlobalAveragePooling2D(),
            tf.keras.layers.Dense(len(CLASSES), activation='softmax')
        ])
            
    model.compile(
        optimizer='adam',
        loss = 'sparse_categorical_crossentropy',
        metrics=['sparse_categorical_accuracy']
    )
    model.summary()
    

    Training

    history = model.fit(get_training_dataset(), steps_per_epoch=STEPS_PER_EPOCH, epochs=EPOCHS, validation_data=get_validation_dataset())
    
    display_training_curves(history.history['loss'], history.history['val_loss'], 'loss', 211)
    display_training_curves(history.history['sparse_categorical_accuracy'], history.history['val_sparse_categorical_accuracy'], 'accuracy', 212)
    

    Confusion matrix

    cmdataset = get_validation_dataset(ordered=True) # since we are splitting the dataset and iterating separately on images and labels, order matters.
    images_ds = cmdataset.map(lambda image, label: image)
    labels_ds = cmdataset.map(lambda image, label: label).unbatch()
    cm_correct_labels = next(iter(labels_ds.batch(NUM_VALIDATION_IMAGES))).numpy() # get everything as one batch
    cm_probabilities = model.predict(images_ds)
    cm_predictions = np.argmax(cm_probabilities, axis=-1)
    print("Correct   labels: ", cm_correct_labels.shape, cm_correct_labels)
    print("Predicted labels: ", cm_predictions.shape, cm_predictions)
    
    cmat = confusion_matrix(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)))
    score = f1_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)), average='macro')
    precision = precision_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)), average='macro')
    recall = recall_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)), average='macro')
    cmat = (cmat.T / cmat.sum(axis=1)).T # normalized
    display_confusion_matrix(cmat, score, precision, recall)
    print('f1 score: {:.3f}, precision: {:.3f}, recall: {:.3f}'.format(score, precision, recall))
    

    Predictions

    test_ds = get_test_dataset(ordered=True) # since we are splitting the dataset and iterating separately on images and ids, order matters.
    
    print('Computing predictions...')
    test_images_ds = test_ds.map(lambda image, idnum: image)
    probabilities = model.predict(test_images_ds)
    predictions = np.argmax(probabilities, axis=-1)
    print(predictions)
    
    print('Generating submission.csv file...')
    test_ids_ds = test_ds.map(lambda image, idnum: idnum).unbatch()
    test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES))).numpy().astype('U') # all in one batch
    np.savetxt('submission.csv', np.rec.fromarrays([test_ids, predictions]), fmt=['%s', '%d'], delimiter=',', header='id,label', comments='')
    !head submission.csv
    

    Visual validation

    dataset = get_validation_dataset()
    dataset = dataset.unbatch().batch(20)
    batch = iter(dataset)
    
    # run this cell again for next set of images
    images, labels = next(batch)
    probabilities = model.predict(images)
    predictions = np.argmax(probabilities, axis=-1)
    display_batch_of_images((images, labels), predictions)
    

    在这里插入图片描述

  • 相关阅读:
    Java实现各种内部排序算法
    Java实现堆排序(大根堆)
    Java对象的序列化和反序列化
    Java实现链式存储的二叉查找树(递归方法)
    337. House Robber III(包含I和II)
    318. Maximum Product of Word Lengths
    114. Flatten Binary Tree to Linked List
    106. Construct Binary Tree from Inorder and Postorder Traversal
    105. Construct Binary Tree from Preorder and Inorder Traversal
    96. Unique Binary Search Trees(I 和 II)
  • 原文地址:https://www.cnblogs.com/DreamingFishZIHao/p/12982964.html
Copyright © 2011-2022 走看看