zoukankan      html  css  js  c++  java
  • 在路上---学习篇(一)Python 数据结构和算法 (5)二分查找、二叉树遍历

    独白:

      利用算法进行查找指定元素,最近学习二分查找和二叉树遍历。二分查找前提是在有序中进行查找,二叉树引入了树的概念。树的概念其中有许多小知识点,也是一种新的数据结构。还是之前的感悟,需了解其本质才会写出更好的算法。


    二分查找

      二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

    '''
    二分查找
    时间复杂度:O(logn)
    
    '''
    '''
    前提是在一个有序的列表
    '''
    
    import time
    
    #
    # def binary_search(list, item):
    #     ''' 非递归实现 '''
    #
    #     first = 0
    #     last = len(list) - 1
    #     while first <= last :
    #         midpoint = ( first + last ) // 2
    #         if list[midpoint] == item:
    #             return True
    #         elif item < list[midpoint]:
    #             last = midpoint - 1
    #         else:
    #             first = midpoint + 1
    #     return False
    
    
    def binary_search(list, item):
        """ 递归实现 """
        print(list)
        if len(list) == 0:
            return False
    
        else:
            midpoint = len(list) // 2
            if list[midpoint] == item:
                return True
            else:
                if list[midpoint] > item:
                    return binary_search(list[:midpoint], item)
                else:
                    return binary_search(list[midpoint + 1:], item)
    
    
    if __name__ == '__main__':
        # 开始时间
        first_time = time.time()
    
        # 建立个有序的列表
        lis = [1, 2, 5, 6, 7, 8, 9, 17, 156, 678]
    
        # 列表排序
        print(binary_search(lis, 6))
    
        # 结束时间
        last_time = time.time()
    
        print("共用时%s" % (last_time - first_time))
    

    树与树算法

    树的概念

    树(英语:tree)是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合。它是由n(n>=1)个有限节点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点: 

    • 每个节点有零个或多个子节点; 
    • 没有父节点的节点称为根节点; 
    • 每一个非根节点有且只有一个父节点; 
    • 除了根节点外,每个子节点可以分为多个不相交的子树;

    树的术语

    • 节点的度:一个节点含有的子树的个数称为该节点的度;
    • 树的度:一棵树中,最大的节点的度称为树的度;
    • 叶节点或终端节点:度为零的节点;
    • 父亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点;
    • 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点;
    • 兄弟节点:具有相同父节点的节点互称为兄弟节点;
    • 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
    • 树的高度或深度:树中节点的最大层次;
    • 堂兄弟节点:父节点在同一层的节点互为堂兄弟;
    • 节点的祖先:从根到该节点所经分支上的所有节点;
    • 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。
    • 森林:由m(m>=0)棵互不相交的树的集合称为森林;

    树的种类

    • 无序树:树中任意节点的子节点之间没有顺序关系,这种树称为无序树,也称为自由树;
    • 有序树:树中任意节点的子节点之间有顺序关系,这种树称为有序树;
      • 二叉树:每个节点最多含有两个子树的树称为二叉树; 
        • 完全二叉树:对于一颗二叉树,假设其深度为d(d>1)。除了第d层外,其它各层的节点数目均已达最大值,且第d层所有节点从左向右连续地紧密排列,这样的二叉树被称为完全二叉树,其中满二叉树的定义是所有叶节点都在最底层的完全二叉树; 
        • 平衡二叉树(AVL树):当且仅当任何节点的两棵子树的高度差不大于1的二叉树; 
        • 排序二叉树(二叉查找树(英语:Binary Search Tree),也称二叉搜索树、有序二叉树); 
      • 霍夫曼树(用于信息编码):带权路径最短的二叉树称为哈夫曼树或最优二叉树;
      • B树:一种对读写操作进行优化的自平衡的二叉查找树,能够保持数据有序,拥有多余两个子树

    二叉树的基本概念

    二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree) 

    二叉树的性质(特性)

    性质1: 在二叉树的第i层上至多有2^(i-1)个结点(i>0)
    性质2: 深度为k的二叉树至多有2^k - 1个结点(k>0)
    性质3: 对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,则N0=N2+1;
    性质4:具有n个结点的完全二叉树的深度必为 log2(n+1)
    性质5:对完全二叉树,若从上至下、从左至右编号,则编号为i 的结点,其左孩子编号必为2i,其右孩子编号必为2i+1;其双亲的编号必为i/2(i=1 时为根,除外)

    class Node(object):
        '''节点类'''
        def __init__(self, elem, lchild = None, rchild = None):
            self.elem = elem
            self.lchild = lchild
            self.rchild = rchild
    
    class Tree(object):
        '''树类'''
        def __init__(self, root = None):
            self.root = root
    
        def add(self, elem):
            '''为树添加节点'''
            node = Node(elem)
            # 如果是空树,对根节点进行赋值
            if self.root == None:
                self.root = node
                return
            else:
                queue = []
                queue.append(self.root)
                # 对已有节点进行层次遍历
                while queue:
                    # 弹出队列的第一个元素
                    cur = queue.pop(0)
                    if cur.lchild is None:
                        cur.lchild = node
                        return
                    elif cur.rchild is None:
                        cur.rchild = node
                        return
                    else:
                        # 如果左右节点不为空,加入队列继续判断
                        queue.append(cur.lchild)
                        queue.append(cur.rchild)
    

    二叉树的遍历

    树的遍历是树的一种重要的运算。所谓遍历是指对树中所有结点的信息的访问,即依次对树中每个结点访问一次且仅访问一次,我们把这种对所有节点的访问称为遍历(traversal)。那么树的两种重要的遍历模式是深度优先遍历和广度优先遍历,深度优先一般用递归,广度优先一般用队列。一般情况下能用递归实现的算法大部分也能用堆栈来实现。

    深度优先遍历

    对于一颗二叉树,深度优先搜索(Depth First Search)是沿着树的深度遍历树的节点,尽可能深的搜索树的分支。
    那么深度遍历有重要的三种方法。这三种方式常被用于访问树的节点,它们之间的不同在于访问每个节点的次序不同。这三种遍历分别叫做先序遍历(preorder),中序遍历(inorder)和后序遍历(postorder)。我们来给出它们的详细定义,然后举例看看它们的应用。

      • 先序遍历 在先序遍历中,我们先访问根节点,然后递归使用先序遍历访问左子树,再递归使用先序遍历访问右子树
        根节点->左子树->右子树
    def preorder(self, root):
        """递归实现先序遍历"""
        if root == None:
            return
        print(root.elem)
        self.preorder(root.lchild)
        self.preorder(root.rchild)
    
      • 中序遍历 在中序遍历中,我们递归使用中序遍历访问左子树,然后访问根节点,最后再递归使用中序遍历访问右子树                                 左子树->根节点->右子树
    def inorder(self, root):
        """递归实现中序遍历"""
        if root == None:
            return
        self.inorder(root.lchild)
        print(root.elem)
        self.inorder(root.rchild)
    
      • 后序遍历 在后序遍历中,我们先递归使用后序遍历访问左子树和右子树,最后访问根节点                                                                               左子树->右子树->根节点
    def postorder(self, root):
        """递归实现后续遍历"""
        if root == None:
            return
        self.postorder(root.lchild)
        self.postorder(root.rchild)
        print (root.elem)
    

    广度优先遍历(层次遍历)

    从树的root开始,从上到下从从左到右遍历整个树的节点

    def breadth_travel(self, root):
        """利用队列实现树的层次遍历"""
        if root == None:
            return
        queue = []
        queue.append(root)
        while queue:
            node = queue.pop(0)
            print (node.elem)
            if node.lchild != None:
                queue.append(node.lchild)
            if node.rchild != None:
                queue.append(node.rchild)
    
  • 相关阅读:
    FreeMarker常用语法学习
    Oracle如何实现创建数据库、备份数据库及数据导出导入的一条龙操作-------sql方式
    Oracle Partition 分区详细总结
    oracle 当中,(+)是什么意思
    SQL中EXISTS的用法
    JS return false 与 return true
    Merge into语句用法及其效率问题
    几种设置表单元素中文本输入框不可编辑的方法
    Oracle存储过程基本语法
    UNIX网络编程——Socket粘包问题
  • 原文地址:https://www.cnblogs.com/Dreamxin/p/8038511.html
Copyright © 2011-2022 走看看