zoukankan      html  css  js  c++  java
  • zoj 3696 Alien's Organ (泊松分布(概率))

    Alien's Organ
     

    Time Limit: 2 Seconds      Memory Limit: 65536 KB

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3696

     

    There's an alien whose name is Marjar. It is an universal solder came from planet Highrich a long time ago.

    Marjar is a strange alien. It needs to generate new organs(body parts) to fight. The generated organs will provide power to Marjar and then it will disappear. To fight for problem of moral integrity decay on our earth, it will randomly generate new fighting organs all the time, no matter day or night, no matter rain or shine. Averagely, it will generate λ new fighting organs every day.

    Marjar's fighting story is well known to people on earth. So can you help to calculate the possibility of that Marjar generates no more than N organs in one day?

    Input

    The first line contains a single integer T (0 ≤ T ≤ 10000), indicating there are T cases in total. Then the following T lines each contains one integer N (1 ≤ N ≤ 100) and one float numberλ (1 ≤ λ ≤ 100), which are described in problem statement.

    Output

    For each case, output the possibility described in problem statement, rounded to 3 decimal points.

    Sample Input

    3
    5 8.000
    8 5.000
    2 4.910

    Sample Output

    0.191
    0.932
    0.132


    解题思路:泊松分布:
        

           泊松分布的概率质量函数为:

            P(X=k)=\frac{e^{-\lambda}\lambda^k}{k!}

          泊松分布的参数 λ 是单位时间(或单位面积)内随机事件的平均发生率。

           泊松分布的数学期望和方差均为  λ;

    此题关键在于数学公式的感知,起初以为是正态分布,纠结了好久,没能写出来,最后还是找了下概率论的书,套了下所有觉得可能的分布,最终发现泊松分布最恰当。

    此题求解的是 P(X <= K) 的概率

        P(X <= K) = P(0) + P(1) + P(2) + ··· + P(K)(X= 0,1,2,…)

     

    AC 代码:
     1 #include<iostream>
     2 #include<math.h>
     3 #include<stdio.h>
     4 
     5 using namespace std;
     6 
     7 typedef long long LL;
     8 
     9 int main()
    10 {
    11     LL n, t, i;
    12     double y, final, mul;
    13     cin >> t;
    14     while(t--) {
    15         cin >> n >> y;
    16         final = 0.0;
    17         mul = 1;
    18         for(i = 1; i <= n; ++i) {       //P(1)~ P(n) 的情况
    19             mul *= (i*1.0);
    20             final += (pow(y, i) / mul * exp(-y));
    21         }
    22         final += exp(-y);           // P(0) 的情况
    23         printf("%.3lf\n", final);
    24     }
    25     return 0;
    26 }






  • 相关阅读:
    指针常量 和 常量指针
    串口通讯
    C语言的抽象与函数指针2
    STM32 中常见错误 的处理方法
    串行通信之狂扯篇
    VMware中虚拟机网卡的四种模式
    VSFTP配置虚拟用户
    MySQL数据库备份命令
    rsync Linux系统下的数据镜像备份工具
    linux常用命令
  • 原文地址:https://www.cnblogs.com/Duahanlang/p/3065472.html
Copyright © 2011-2022 走看看