zoukankan      html  css  js  c++  java
  • P3052 [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper 状压dp

    这个状压dp其实很明显,n < 18写在前面了当然是状压.状态其实也很好想,但是有点问题,就是如何判断空间是否够大.

    再单开一个g数组,存剩余空间就行了.

    题干:

    题目描述
    
    A little known fact about Bessie and friends is that they love stair climbing races. A better known fact is that cows really don't like going down stairs. So after the cows finish racing to the top of their favorite skyscraper, they had a problem. Refusing to climb back down using the stairs, the cows are forced to use the elevator in order to get back to the ground floor.
    
    The elevator has a maximum weight capacity of W (1 <= W <= 100,000,000) pounds and cow i weighs C_i (1 <= C_i <= W) pounds. Please help Bessie figure out how to get all the N (1 <= N <= 18) of the cows to the ground floor using the least number of elevator rides. The sum of the weights of the cows on each elevator ride must be no larger than W.
    
    给出n个物品,体积为w[i],现把其分成若干组,要求每组总体积<=W,问最小分组。(n<=18)
    输入输出格式
    输入格式:
    
    * Line 1: N and W separated by a space.
    
    * Lines 2..1+N: Line i+1 contains the integer C_i, giving the weight of one of the cows.
    
    输出格式:
    
    * A single integer, R, indicating the minimum number of elevator rides needed.
    
    one of the R trips down the elevator.
    
    输入输出样例
    输入样例#1: 复制
    
    4 10 
    5 
    6 
    3 
    7 
    
    输出样例#1: 复制
    
    3 
    
    说明
    
    There are four cows weighing 5, 6, 3, and 7 pounds. The elevator has a maximum weight capacity of 10 pounds.
    
    We can put the cow weighing 3 on the same elevator as any other cow but the other three cows are too heavy to be combined. For the solution above, elevator ride 1 involves cow #1 and #3, elevator ride 2 involves cow #2, and elevator ride 3 involves cow #4. Several other solutions are possible for this input.

    代码:

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<ctime>
    #include<queue>
    #include<algorithm>
    #include<cstring>
    using namespace std;
    #define duke(i,a,n) for(int i = a;i <= n;i++)
    #define lv(i,a,n) for(int i = a;i >= n;i--)
    #define clean(a) memset(a,0,sizeof(a))
    const int INF = 1 << 30;
    typedef long long ll;
    typedef double db;
    template <class T>
    void read(T &x)
    {
        char c;
        bool op = 0;
        while(c = getchar(), c < '0' || c > '9')
            if(c == '-') op = 1;
        x = c - '0';
        while(c = getchar(), c >= '0' && c <= '9')
            x = x * 10 + c - '0';
        if(op) x = -x;
    }
    template <class T>
    void write(T x)
    {
        if(x < 0) putchar('-'), x = -x;
        if(x >= 10) write(x / 10);
        putchar('0' + x % 10);
    }
    int n,W;
    int w[25];
    int g[1 << 19],f[1 << 19];
    int main()
    {
        read(n);read(W);
        duke(i,1,n)
        {
            read(w[i]);
        }
        memset(f,127,sizeof(f));
        f[0] = 1;
        g[0] = W;
        duke(i,0,(1 << n) - 1)
        {
            duke(j,1,n)
            {
                if(i & (1 << (j - 1)))
                    continue;
                if(g[i] >= w[j] && f[i | (1 << (j - 1))] >= f[i])
                {
                    f[i | (1 << (j - 1))] = f[i];
                    g[i | (1 << (j - 1))] = max(g[i | (1 << (j - 1))],g[i] - w[j]);
                }
                else if(g[i] < w[j] && f[i | (1 << (j - 1))] >= f[i] + 1)
                {
                    f[i | (1 << (j - 1))] = f[i] + 1;
                    g[i | (1 << (j - 1))] = max(g[i | (1 << (j - 1))],W - w[j]);
                }
            }
        }
        printf("%d
    ",f[(1 << n) - 1]);
        return 0;
    }
  • 相关阅读:
    TP3.2框架,实现空模块、空控制器、空操作的页面404替换||同步实现apache报错404页面替换
    调用支付宝PHP接口API实现在线即时支付功能(UTF-8编码)
    JQuery实现的 checkbox 全选;<select>下拉框功能
    使用PHP做移动端 api接口开发方法(适用于TP框架)
    Eclipse jvm启动参数在哪设置
    对 META标签 的一点点了解
    Java反射在整个程序运行中的位置
    Java 为什么要使用反射(通俗易懂的举例)
    粗略介绍Java AQS的实现原理
    Java并发包中线程池的种类和特点介绍
  • 原文地址:https://www.cnblogs.com/DukeLv/p/9708935.html
Copyright © 2011-2022 走看看