zoukankan      html  css  js  c++  java
  • POJ Area of Simple Polygons 扫描线

    这个题lba等神犇说可以不用离散化,但是我就是要用。

    题干:

    Description
    
    There are N, 1 <= N <= 1,000 rectangles in the 2-D xy-plane. The four sides of a rectangle are horizontal or vertical line segments. Rectangles are defined by their lower-left and upper-right corner points. Each corner point is a pair of two nonnegative integers in the range of 0 through 50,000 indicating its x and y coordinates. 
    
    Assume that the contour of their union is defi ned by a set S of segments. We can use a subset of S to construct simple polygon(s). Please report the total area of the polygon(s) constructed by the subset of S. The area should be as large as possible. In a 2-D xy-plane, a polygon is defined by a finite set of segments such that every segment extreme (or endpoint) is shared by exactly two edges and no subsets of edges has the same property. The segments are edges and their extremes are the vertices of the polygon. A polygon is simple if there is no pair of nonconsecutive edges sharing a point. 
    
    Example: Consider the following three rectangles: 
    
    rectangle 1: < (0, 0) (4, 4) >, 
    
    rectangle 2: < (1, 1) (5, 2) >, 
    
    rectangle 3: < (1, 1) (2, 5) >. 
    
    The total area of all simple polygons constructed by these rectangles is 18. 
    Input
    
    The input consists of multiple test cases. A line of 4 -1's separates each test case. An extra line of 4 -1's marks the end of the input. In each test case, the rectangles are given one by one in a line. In each line for a rectangle, 4 non-negative integers are given. The first two are the x and y coordinates of the lower-left corner. The next two are the x and y coordinates of the upper-right corner.
    Output
    For each test case, output the total area of all simple polygons in a line. 
    Sample Input
    0 0 4 4
    1 1 5 2
    1 1 2 5
    -1 -1 -1 -1
    0 0 2 2
    1 1 3 3
    2 2 4 4
    -1 -1 -1 -1
    -1 -1 -1 -1  
    Sample Output
    18
    10 

    代码:

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #include<queue>
    #include<stack>
    #include<cmath>
    using namespace std;
    #define duke(i,a,n) for(int i = a;i <= n;i++)
    #define lv(i,a,n) for(int i = a;i >= n;i--)
    #define clean(a) memset(a,0,sizeof(a))
    const int INF = 1 << 30;
    const int mod = 998244353;
    typedef double db;
    template <class T>
    void read(T &x)
    {
        char c;
        bool op = 0;
        while(c = getchar(), c < '0' || c > '9')
            if(c == '-') op = 1;
        x = c - '0';
        while(c = getchar(), c >= '0' && c <= '9')
            {x = x * 10 + c - '0';if(x > mod) x %= mod;}
        if(op) x = -x;
    }
    template <class T>
    void write(T x)
    {
        if(x < 0) putchar('-'), x = -x;
        if(x >= 10) write(x / 10);
        putchar('0' + x % 10);
    }
    struct node
    {
        int s,e,h,f;
    }p[100000];
    int n,m,ans;
    int tree[500000],x[500000];
    int c[500000];
    void init()
    {
        n = m = ans = 0;
        clean(tree);
        clean(p);
        clean(c);
        x[0] = -1;
    }
    bool cmp(node a,node b)
    {
        return a.h < b.h;
    }
    
    void push_up(int o,int l,int r)
    {
        // printf("@%d %d
    ",l,r);
        if(c[o] != 0) tree[o] = x[r+1] - x[l];
        else if(l == r) tree[o] = 0;
        else tree[o] = tree[o << 1] + tree[o << 1 | 1];
    }
    
    void update(int o,int l,int r,int x,int y,int w)
    {
        if(l == x && r == y) c[o] += w;
        else
        {
            int mid = (l + r) >> 1;
            if(y <= mid) update(o << 1,l,mid,x,y,w);
            else if(x > mid) update(o << 1 | 1,mid + 1,r,x,y,w);
            else update(o << 1,l,mid,x,mid,w),update(o << 1 | 1,mid + 1,r,mid + 1,y,w);
        }
        push_up(o,l,r);
    }
    int main()
    {
        int a,b,c,d;
        init();
        while(scanf("%d%d%d%d",&a,&b,&c,&d) != EOF)
        {
            if(a < 0)
            break;
            while(a >= 0)
            {
                p[++n].s = a;p[n].e = c;p[n].h = b;p[n].f = 1;
                x[n] = a;
                p[++n].s = a;p[n].e = c;p[n].h = d;p[n].f = -1;
                x[n] = c;
                read(a);read(b);read(c);read(d);
            }
            sort(x + 1,x + n + 1);
            m = unique(x + 1,x + n + 1) - x - 1;
            sort(p + 1,p + n + 1,cmp);
            duke(i,1,n-1)
            {
                int l = lower_bound(x,x + m,p[i].s) - x;
                int r = lower_bound(x,x + m,p[i].e) - x - 1;
                update(1,1,m,l,r,p[i].f);
                ans += tree[1] * (p[i + 1].h - p[i].h);
            }
            printf("%d
    ",ans);
            init();
        }
        return 0;
    }
  • 相关阅读:
    php 压缩文件 zip
    php 创建返回结果配置文件 实例
    php 生成xml文件
    php 获取读取文件内容
    基于JAVA语言的多线程技术
    Java HTTP请求
    TCP与UDP
    VC6.0 调试.dll文件
    [JNI] Java 调用 C++ dll
    HTTPS与SSL
  • 原文地址:https://www.cnblogs.com/DukeLv/p/9799249.html
Copyright © 2011-2022 走看看