zoukankan      html  css  js  c++  java
  • [模板]原根

    原根就是一种数论的定义,详情请见ssy的博客.我这里主要讲的是poj的1284.

    poj这道题要求的是一个数的原根有多少个,我一开始自己瞎做把所有原根都求出来了,代码如下:

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<ctime>
    #include<queue>
    #include<algorithm>
    #include<cstring>
    using namespace std;
    #define duke(i,a,n) for(register int i = a;i <= n;i++)
    #define lv(i,a,n) for(register int i = a;i >= n;i--)
    #define clean(a) memset(a,0,sizeof(a))
    const int INF = 1 << 30;
    typedef long long ll;
    typedef double db;
    template <class T>
    void read(T &x)
    {
        char c;
        bool op = 0;
        while(c = getchar(), c < '0' || c > '9')
            if(c == '-') op = 1;
        x = c - '0';
        while(c = getchar(), c >= '0' && c <= '9')
            x = x * 10 + c - '0';
        if(op) x = -x;
    }
    template <class T>
    void write(T x)
    {
        if(x < 0) putchar('-'), x = -x;
        if(x >= 10) write(x / 10);
        putchar('0' + x % 10);
    }
    int p;
    int used[100005],pri[50004],top = 0;
    int st[70000],tp = 0;
    void pri_table()
    {
        for(int i = 2;i <= 1000;i++)
        {
            if(used[i] == 0)
            {
                for(int j = 2;j <= 1000 / i;j++)
                {
                    used[i * j] = 1;
                }
                pri[++top] = i;
            }
        }
    }
    void doit()
    {
        clean(st);tp = 0;
        int now = p - 1;
        duke(i,1,top)
        {
            if(now == 1) break;
            if(pri[i] > ceil(sqrt(p)))
            {
                break;
            }
            if(now != 0 && now % pri[i] == 0)
            st[++tp] = pri[i];//cout<<pri[i]<<" ";
            while(now != 0 && now % pri[i] == 0)
            {
                now /= pri[i];
            }
        }
        if(now != 1 && now !=  0)
        {
            st[++tp] = now;
            //cout<<now<<endl;
        }
        /*puts("");*/
    }
    int qpow(int a,int b)
    {
        int tot = 1;
        //cout<<a<<" "<<b<<endl;
        while(b)
        {
            if(b % 2 == 1)
            {
                tot *= a;
                tot %= p;
            }
            a *= a;
            a %= p;
            b >>= 1;
        }
        //cout<<tot<<endl;
        return tot;
    }
    void done()
    {
        int num = 0;
        int now = p - 1;
        /*duke(i,1,tp)
        printf("%d ",st[i]);
        puts("");*/
        duke(i,2,now)
        {
            int flag = 0;
            //cout<<i<<endl;
            //cout<<tp<<endl;
            duke(j,1,tp)
            {
                if(qpow(i,now / st[j]) == 1)
                {
                    flag = 1;
                    break;
                }
            }
            if(flag == 0)
            {
                num++;
            }
        }
        printf("%d
    ",num);
    }
    int main()
    {
        pri_table();
        /*duke(i,1,10)
        printf("%d ",pri[i]);
        puts("");*/
        while(scanf("%d",&p) != EOF)
        {
            tp = 0;
            doit();
            done();
        }
        return 0;
    }

    但是这样会T,百度了一下,发现一个性质,就是一个数的原根个数就是phi[phi[n]],而此题n是素数,phi[n]=n - 1;

    所以直接输出phi[n - 1]就行了.

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<ctime>
    #include<queue>
    #include<algorithm>
    #include<cstring>
    using namespace std;
    #define duke(i,a,n) for(register int i = a;i <= n;i++)
    #define lv(i,a,n) for(register int i = a;i >= n;i--)
    #define clean(a) memset(a,0,sizeof(a))
    const int INF = 1 << 30;
    typedef long long ll;
    typedef double db;
    template <class T>
    void read(T &x)
    {
        char c;
        bool op = 0;
        while(c = getchar(), c < '0' || c > '9')
            if(c == '-') op = 1;
        x = c - '0';
        while(c = getchar(), c >= '0' && c <= '9')
            x = x * 10 + c - '0';
        if(op) x = -x;
    }
    template <class T>
    void write(T x)
    {
        if(x < 0) putchar('-'), x = -x;
        if(x >= 10) write(x / 10);
        putchar('0' + x % 10);
    }
    int eul[66666];
    void phi()
    {
        duke(i,1,66666)
        {
            eul[i] = i;
        }
        for(int i = 2;i <= 66666;i++)
        {
            if(eul[i] == i)
            {
                for(int j = i;j <= 66666;j += i)
                {
                    eul[j] = eul[j] / i * (i - 1);
                }
            }
        }
        return;
    }
    int main()
    {
        int n;
        phi();
        while(~scanf("%d",&n))
        {
            printf("%d
    ",eul[n - 1]);
        }
        return 0;
    }

    妙极.

  • 相关阅读:
    EOJ 1068 石子游戏-B
    二分图匹配(匈牙利算法模板)
    注入(3)--远程线程注入(CreateRemoteThread)
    cmd运行Java命令时编译通过,但是找不到主类或无法加载主类
    Java线程的两种实现方法
    Java String类一些操作的内存问题
    Java构造方法的继承调用
    Android布局(5)--绝对布局(AbsoluteLayout)
    Android布局(4)--相对布局(RelativeLayout)
    Android布局(3)--帧布局(FrameLayout)
  • 原文地址:https://www.cnblogs.com/DukeLv/p/9957535.html
Copyright © 2011-2022 走看看