zoukankan      html  css  js  c++  java
  • Educational Codeforces Round 74

    Contest Info


    [Practice Link](https://codeforces.com/contest/1238)
    Solved A B C D E F G
    6/7 O O O O Ø Ø -
    • O 在比赛中通过
    • Ø 赛后通过
    • ! 尝试了但是失败了
    • - 没有尝试

    Solutions


    A. Prime Subtraction

    签到。

    B. Kill 'Em All

    签到。

    C. Standard Free2play

    贪心即可。

    代码:

    view code
    #include <bits/stdc++.h>
    #define debug(...) { printf("#  "); printf(__VA_ARGS__); puts(""); }
    #define fi first
    #define se second
    #define endl "
    " 
    using namespace std;
    using db = double;
    using ll = long long;
    using ull = unsigned long long; 
    using pII = pair <int, int>;
    using pLL = pair <ll, ll>;
    constexpr int mod = 1e9 + 7;
    template <class T1, class T2> inline void chadd(T1 &x, T2 y) { x += y; while (x >= mod) x -= mod; while (x < 0) x += mod; } 
    template <class T1, class T2> inline void chmax(T1 &x, T2 y) { if (x < y) x = y; }
    template <class T1, class T2> inline void chmin(T1 &x, T2 y) { if (x > y) x = y; }
    inline int rd() { int x; cin >> x; return x; }
    template <class T> inline void rd(T &x) { cin >> x; }
    template <class T> inline void rd(vector <T> &vec) { for (auto &it : vec) cin >> it; }
    inline void pt() { cout << endl; }
    template <class T, class... Ts> void pt(const T& arg, const Ts&... args) { cout << arg << " "; pt(args...); }
    template <class T> inline void pt(const T &s) { cout << s << "
    "; }
    template <class T> inline void pt(const vector <T> &vec) { for (auto &it : vec) cout << it << " "; cout << endl; } 
    ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
    inline ll qpow(ll base, ll n) { ll res = 1; while (n) { if (n & 1) res = res * base % mod; base = base * base % mod; n >>= 1; } return res; }
    constexpr int N = 2e5 + 10;
    int h, n, a[N]; 
    void run() {
    	cin >> h >> n;
    	for (int i = 1; i <= n; ++i) cin >> a[i];
    	if (n == 1) return pt(0);
    	int res = 0, lst = h; 
    	for (int i = 2; i <= n; ++i) {
    		if (lst <= a[i]) continue;
    		lst = a[i] + 1;
    		if (i == n) {
    			if (lst >= 3) ++res; 
    			break;
    		}
    		if (lst - a[i + 1] >= 3) {
    			++res;
    			lst = a[i + 1] + 1;
    		} else {
    			lst = a[i + 1];
    		}
    	}
    	pt(res);
    }
    
    int main() {
    	ios::sync_with_stdio(false);
    	cin.tie(nullptr); cout.tie(nullptr);
    	cout << fixed << setprecision(20);
    	int _T; cin >> _T;
    	while (_T--) run();
    	return 0;
    }
    

    D. AB-string

    题意:
    给出一个字符串(S),其字符集只有'A', 'B',现在统计有多少个子串是符合要求的,一个子串是符合要求的当且仅当其中每个字符都属于一个长度大于(1)的回文子串中。

    思路:
    考虑符合要求的串的长度肯定大于等于(2),那么只有一种字符是符合要求的。
    再考虑,枚举每个左端点,找多少个右端点是符合的。
    首先(AB)是不符合的,但是(ABA),并且后面不管加什么字符都是符合的。
    那么(AAAABA)后面不管加什么字符都是符合的。
    对于首字母是(B)的同理考虑即可。

    代码:

    view code
    #include <bits/stdc++.h>
    #define debug(...) { printf("#  "); printf(__VA_ARGS__); puts(""); }
    #define fi first
    #define se second
    #define endl "
    " 
    using namespace std;
    using db = double;
    using ll = long long;
    using ull = unsigned long long; 
    using pII = pair <int, int>;
    using pLL = pair <ll, ll>;
    constexpr int mod = 1e9 + 7;
    template <class T1, class T2> inline void chadd(T1 &x, T2 y) { x += y; while (x >= mod) x -= mod; while (x < 0) x += mod; } 
    template <class T1, class T2> inline void chmax(T1 &x, T2 y) { if (x < y) x = y; }
    template <class T1, class T2> inline void chmin(T1 &x, T2 y) { if (x > y) x = y; }
    inline int rd() { int x; cin >> x; return x; }
    template <class T> inline void rd(T &x) { cin >> x; }
    template <class T> inline void rd(vector <T> &vec) { for (auto &it : vec) cin >> it; }
    inline void pt() { cout << endl; }
    template <class T, class... Ts> void pt(const T& arg, const Ts&... args) { cout << arg << " "; pt(args...); }
    template <class T> inline void pt(const T &s) { cout << s << "
    "; }
    template <class T> inline void pt(const vector <T> &vec) { for (auto &it : vec) cout << it << " "; cout << endl; } 
    ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
    inline ll qpow(ll base, ll n) { ll res = 1; while (n) { if (n & 1) res = res * base % mod; base = base * base % mod; n >>= 1; } return res; }
    constexpr int N = 3e5 + 10;
    int n; char s[N];
    vector <int> A, B;
    void run() {
    	cin >> (s + 1);
    	A.clear(); B.clear();
    	for (int i = 1; i <= n; ++i) {
    		if (s[i] == 'A') A.push_back(i);
    		else B.push_back(i);
    	}
    	ll res = 0;
    	for (int i = 1; i < n; ++i) {
    		if (s[i] == 'A') {
    			auto nx = upper_bound(B.begin(), B.end(), i);
    			if (nx == B.end()) {
    				res += (n - i);
    			} else if (*nx == i + 1) {
    				auto nnx = upper_bound(A.begin(), A.end(), *nx);
    				if (nnx != A.end()) {
    					res += n - *nnx + 1;
    				}
    			} else {
    				res += n - i - 1;
    			}
    		} else {
    			auto nx = upper_bound(A.begin(), A.end(), i);
    			if (nx == A.end()) {
    				res += n - i;
    			} else if (*nx == i + 1) {
    				auto nnx = upper_bound(B.begin(), B.end(), *nx);
    				if (nnx != B.end()) {
    					res += n - *nnx + 1;
    				}
    			} else {
    				res += n - i - 1;
    			}
    		}
    	}
    	pt(res);
    }
    
    int main() {
    	ios::sync_with_stdio(false);
    	cin.tie(nullptr); cout.tie(nullptr);
    	cout << fixed << setprecision(20);
    	while (cin >> n) run();
    	return 0;
    }
    

    E. Keyboard Purchase

    题意:
    给出一个字符串(S),现在要造一个键盘,这个键盘只有一排键,要敲打这段字符串(S),花费是:

    [egin{eqnarray*} sumlimits_{i = 2}^n |pos_{s_{i - 1}} - pos_{s_i}| end{eqnarray*} ]

    现在问最小代价,在选择合适的键盘下,键盘上键位是自定的。

    思路:
    我们考虑拆绝对值,那么对于两个相邻的((a, b)),那么我们只需要关心(pos_a)是在(pos_b)的前面还是后面即可,这样就确定了绝对值中的符号。
    那么用(f[i][j])表示前(i)个位置,选择的字符二进制状态为(j)的最小代价。
    那么只需要考虑(f[i][S])转移到(f[i + 1][S cup {v}] for;v otin S)

    代码:

    view code
    #pragma GCC optimize("Ofast,unroll-loops,no-stack-protector,fast-math")
    #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    #include <bits/stdc++.h>
    #define debug(...) { printf("#  "); printf(__VA_ARGS__); puts(""); }
    #define fi first
    #define se second
    #define endl "
    " 
    using namespace std;
    using db = double;
    using ll = long long;
    using ull = unsigned long long; 
    using pII = pair <int, int>;
    using pLL = pair <ll, ll>;
    constexpr int mod = 1e9 + 7;
    template <class T1, class T2> inline void chadd(T1 &x, T2 y) { x += y; while (x >= mod) x -= mod; while (x < 0) x += mod; } 
    template <class T1, class T2> inline void chmax(T1 &x, T2 y) { if (x < y) x = y; }
    template <class T1, class T2> inline void chmin(T1 &x, T2 y) { if (x > y) x = y; }
    inline int rd() { int x; cin >> x; return x; }
    template <class T> inline void rd(T &x) { cin >> x; }
    template <class T> inline void rd(vector <T> &vec) { for (auto &it : vec) cin >> it; }
    inline void pt() { cout << endl; }
    template <class T, class... Ts> void pt(const T& arg, const Ts&... args) { cout << arg << " "; pt(args...); }
    template <class T> inline void pt(const T &s) { cout << s << "
    "; }
    template <class T> inline void pt(const vector <T> &vec) { for (auto &it : vec) cout << it << " "; cout << endl; } 
    ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
    inline ll qpow(ll base, ll n) { ll res = 1; while (n) { if (n & 1) res = res * base % mod; base = base * base % mod; n >>= 1; } return res; }
    constexpr int N = 1e5 + 10;  
    int n, m, w[30][30], f[1 << 21], g[1 << 21][22], num[1 << 21], lg[1 << 21]; char s[N]; 
    void run() {
        cin >> (s + 1);	
    	memset(w, 0, sizeof w);
    	for (int i = 1; i < n; ++i) {
    		int c = s[i] - 'a', c2 = s[i + 1] - 'a';
    		if (c == c2) continue;
    		++w[c][c2];
    		++w[c2][c];
    	}
    	int lim = 1 << m;
    	memset(g, 0, sizeof g);
    	for (int i = 1; i < lim; ++i) {
    		for (int j = 0; j < m; ++j) {
    			int lb = i & -i;
    			g[i][j] = g[i ^ lb][j] + w[j][lg[lb]]; 
    		}
    	}
    	memset(f, 0x3f, sizeof f); f[0] = 0; 
    	for (int i = 0; i < lim; ++i) {
    		for (int j = 0; j < m; ++j) {
    			if (!((i >> j) & 1)) {
    				int pos = num[i] + 1;
    				chmin(f[i ^ (1 << j)], f[i] + g[i][j] * pos - g[(lim - 1) ^ i ^ (1 << j)][j] * pos);
    			}
    		}
    	}
    	pt(f[lim - 1]);
    }
    
    int main() {
    	memset(num, 0, sizeof num);
    	for (int i = 1; i < 1 << 20; ++i) 
    		num[i] = num[i ^ (i & -i)] + 1;
    	memset(lg, 0, sizeof lg);
    	lg[0] = -1; lg[1] = 0; 
    	for (int i = 2; i < 1 << 20; i <<= 1) lg[i] = lg[i >> 1] + 1;
    	ios::sync_with_stdio(false);
    	cin.tie(nullptr); cout.tie(nullptr);
    	cout << fixed << setprecision(20);
    	while (cin >> n >> m) run();
    	return 0;
    }
    

    F. The Maximum Subtree

    题意:
    定义一张图是合法的当且仅当,每个点表示一个一维数轴上的线段的时候,两个点有边当且仅当他们表示的线段有交集。
    现在给出一棵树,问最多选择多少个点构成的子树是合法的。

    思路:
    (wa)几发就可以发现一个点如果之和父亲有边,那么这种点是随便加的。
    那么对于一个点如果它和儿子连了边,那么它要和其父亲连边,那么其父亲最多连这样的点两个,并且其父亲是根。
    然后再用每个点的子树的最大值更新答案。

    代码:

    view code
    #include <bits/stdc++.h>
    #define debug(...) { printf("#  "); printf(__VA_ARGS__); puts(""); }
    #define fi first
    #define se second
    #define endl "
    " 
    using namespace std;
    using db = double;
    using ll = long long;
    using ull = unsigned long long; 
    using pII = pair <int, int>;
    using pLL = pair <ll, ll>;
    constexpr int mod = 1e9 + 7;
    template <class T1, class T2> inline void chadd(T1 &x, T2 y) { x += y; while (x >= mod) x -= mod; while (x < 0) x += mod; } 
    template <class T1, class T2> inline void chmax(T1 &x, T2 y) { if (x < y) x = y; }
    template <class T1, class T2> inline void chmin(T1 &x, T2 y) { if (x > y) x = y; }
    inline int rd() { int x; cin >> x; return x; }
    template <class T> inline void rd(T &x) { cin >> x; }
    template <class T> inline void rd(vector <T> &vec) { for (auto &it : vec) cin >> it; }
    inline void pt() { cout << endl; }
    template <class T, class... Ts> void pt(const T& arg, const Ts&... args) { cout << arg << " "; pt(args...); }
    template <class T> inline void pt(const T &s) { cout << s << "
    "; }
    template <class T> inline void pt(const vector <T> &vec) { for (auto &it : vec) cout << it << " "; cout << endl; } 
    ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
    inline ll qpow(ll base, ll n) { ll res = 1; while (n) { if (n & 1) res = res * base % mod; base = base * base % mod; n >>= 1; } return res; }
    constexpr int N = 3e5 + 10;
    int n, f[N], rt, res; 
    vector <vector<int>> G; 
    void dfs(int u, int fa) {
    	int Max[2] = {0, 0};
    	int sons = 0;
    	for (auto &v : G[u]) {
    		if (v == fa) continue;
    		++sons;
    		dfs(v, u);
    		if (f[v] > Max[0]) {
    			swap(Max[0], Max[1]);
    			Max[0] = f[v];
    		} else if (f[v] > Max[1]) Max[1] = f[v];
    	}
    	if (u != rt) {
    		f[u] = Max[0] + 1 + max(0, sons - 1);
    		chmax(res, Max[0] + Max[1] + 1 + max(0, sons - 1));
    	} else {
    		f[u] = Max[0] + Max[1] + 1 + max(0, sons - 2);
    		chmax(res, f[u]);
    	}
    }
    void run() { 
    	cin >> n;
    	memset(f, 0, sizeof (f[0]) * (n + 10));
    	G.clear(); G.resize(n + 1);
    	for (int i = 1, u, v; i < n; ++i) {
    		cin >> u >> v;
    		G[u].push_back(v);
    		G[v].push_back(u);
    	}
    	rt = 1; res = 0;
    	for (int i = 2; i <= n; ++i) {
    		if (G[i].size() > 1) {
    			rt = i;
    			break;
    		}
    	}
    	dfs(rt, rt);
    	pt(res); 
    }
    
    int main() {
    	ios::sync_with_stdio(false);
    	cin.tie(nullptr); cout.tie(nullptr);
    	cout << fixed << setprecision(20);
    	int _T; cin >> _T;
    	while (_T--) run();
    	return 0;
    }
    
  • 相关阅读:
    jquery ready()的几种实现方法小结
    jQuery之$(document).ready()使用介绍
    jquery的$(document).ready()和onload的加载顺序
    php var_export与var_dump 输出的不同
    PHP获取和操作配置文件php.ini的几个函数
    PHP 网站保存快捷方式的实现代码
    php 图形验证码的3种方法
    面向对象基础01
    提高记忆力
    Python数据分析环境和工具
  • 原文地址:https://www.cnblogs.com/Dup4/p/11645956.html
Copyright © 2011-2022 走看看