04-树7 二叉搜索树的操作集(30 point(s))
本题要求实现给定二叉搜索树的5种常用操作。
函数接口定义:
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
其中BinTree结构定义如下:
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
函数Insert将X插入二叉搜索树BST并返回结果树的根结点指针;
函数Delete将X从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针;
函数Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针;
函数FindMin返回二叉搜索树BST中最小元结点的指针;
函数FindMax返回二叉搜索树BST中最大元结点的指针。
裁判测试程序样例:
#include <stdio.h>
#include <stdlib.h>
typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT ); /* 中序遍历,由裁判实现,细节不表 */
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
int main()
{
BinTree BST, MinP, MaxP, Tmp;
ElementType X;
int N, i;
BST = NULL;
scanf("%d", &N);
for ( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Insert(BST, X);
}
printf("Preorder:"); PreorderTraversal(BST); printf("
");
MinP = FindMin(BST);
MaxP = FindMax(BST);
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
Tmp = Find(BST, X);
if (Tmp == NULL) printf("%d is not found
", X);
else {
printf("%d is found
", Tmp->Data);
if (Tmp==MinP) printf("%d is the smallest key
", Tmp->Data);
if (Tmp==MaxP) printf("%d is the largest key
", Tmp->Data);
}
}
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Delete(BST, X);
}
printf("Inorder:"); InorderTraversal(BST); printf("
");
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:
10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3
输出样例:
Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9
思路
先序遍历 是 根 左 右
中序遍历 是 左 根 右
插入就是 如果目标比当前的结点大 就往右 递归 比当前结点小 往左递归
碰到 NULL 就插入
然后删除
如果左右子树都存在
那么就找右子树的最小结点来替代当前结点
如果右子数不存在 直接把左子树接过来
如果左子树不存在 直接把右子数接过来
AC代码
#include <stdio.h>
#include <stdlib.h>
typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT ); /* 中序遍历,由裁判实现,细节不表 */
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
int main()
{
BinTree BST, MinP, MaxP, Tmp;
ElementType X;
int N, i;
BST = NULL;
scanf("%d", &N);
for ( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Insert(BST, X);
}
printf("Preorder:"); PreorderTraversal(BST); printf("
");
MinP = FindMin(BST);
MaxP = FindMax(BST);
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
Tmp = Find(BST, X);
if (Tmp == NULL) printf("%d is not found
", X);
else {
printf("%d is found
", Tmp->Data);
if (Tmp==MinP) printf("%d is the smallest key
", Tmp->Data);
if (Tmp==MaxP) printf("%d is the largest key
", Tmp->Data);
}
}
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Delete(BST, X);
}
printf("Inorder:"); InorderTraversal(BST); printf("
");
return 0;
}
/* 你的代码将被嵌在这里 */
void PreorderTraversal( BinTree BT )
{
if (BT == NULL)
return;
printf(" %d", BT->Data);
PreorderTraversal( BT->Left);
PreorderTraversal( BT->Right);
}
void InorderTraversal( BinTree BT )
{
if (BT == NULL)
return;
InorderTraversal( BT->Left );
printf(" %d", BT->Data);
InorderTraversal( BT->Right);
}
BinTree Insert( BinTree BST, ElementType X )
{
if (BST == NULL)
{
BST = (BinTree) malloc(sizeof(struct TNode));
BST->Data = X;
BST->Left = NULL;
BST->Right = NULL;
}
else if (X > BST->Data)
BST->Right = Insert(BST->Right, X);
else if (X < BST->Data)
BST->Left = Insert(BST->Left, X);
return BST;
}
Position Find( BinTree BST, ElementType X )
{
if (BST == NULL)
return NULL;
else if (X == BST->Data)
return BST;
else if (X > BST->Data)
return Find (BST->Right, X);
else if (X < BST->Data)
return Find (BST->Left, X);
}
Position FindMin( BinTree BST )
{
if (BST == NULL)
return NULL;
while (BST->Left != NULL)
BST = BST->Left;
return BST;
}
Position FindMax( BinTree BST )
{
if (BST == NULL)
return NULL;
while (BST->Right != NULL)
BST = BST->Right;
return BST;
}
BinTree Delete( BinTree BST, ElementType X )
{
BinTree temp;
if (BST == NULL)
printf("Not Found
");
else
{
if (X < BST->Data)
BST->Left = Delete(BST->Left, X);
else if (X > BST->Data)
BST->Right = Delete(BST->Right, X);
else
{
if (BST->Left && BST->Right)
{
temp = FindMin(BST->Right);
BST->Data = temp->Data;
BST->Right = Delete(BST->Right, temp->Data);
}
else
{
temp = BST;
if (BST->Left == NULL)
BST = BST->Right;
else if (BST->Right == NULL)
BST = BST->Left;
free(temp);
}
}
}
return BST;
}