zoukankan      html  css  js  c++  java
  • SQL逻辑查询语句执行顺序

    一.SQL语句定义顺序

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    SELECT DISTINCT <select_list>
    FROM <left_table>
    <join_type> JOIN <right_table>
    ON <join_condition>
    WHERE <where_condition>
    GROUP BY <group_by_list>
    HAVING <having_condition>
    ORDER BY <order_by_condition>
    LIMIT <limit_number>
      

     

    二.准备测试

    1. 新建一个测试数据库TestDB;

    1
    CREATE DATABASE TestDB DEFAULT charset utf8;

    2.创建测试表table1和table2;

    复制代码
     CREATE TABLE table1(
         customer_id VARCHAR(10) NOT NULL,
         city VARCHAR(10) NOT NULL,
         PRIMARY KEY(customer_id)
     )ENGINE=INNODB DEFAULT CHARSET=UTF8;
    

    CREATE TABLE table2(
    order_id INT NOT NULL auto_increment,
    customer_id VARCHAR(10),
    PRIMARY KEY(order_id)
    )ENGINE
    =INNODB DEFAULT CHARSET=UTF8;

    复制代码

    3.插入测试数据

    复制代码
    INSERT INTO table1(customer_id,city) VALUES('163','hangzhou');
    INSERT INTO table1(customer_id,city) VALUES('9you','shanghai');
    INSERT INTO table1(customer_id,city) VALUES('tx','hangzhou');
    INSERT INTO table1(customer_id,city) VALUES('baidu','hangzhou');
    

    INSERT INTO table2(customer_id) VALUES('163');
    INSERT INTO table2(customer_id) VALUES(
    '163');
    INSERT INTO table2(customer_id) VALUES(
    '9you');
    INSERT INTO table2(customer_id) VALUES(
    '9you');
    INSERT INTO table2(customer_id) VALUES(
    '9you');
    INSERT INTO table2(customer_id) VALUES(
    'tx');
    INSERT INTO table2(customer_id) VALUES(NULL);

    复制代码

    4.效果

    复制代码
    mysql> select * from table1;
     +-------------+----------+
     | customer_id | city     |
     +-------------+----------+
     | 163         | hangzhou |
     | 9you        | shanghai |
     | baidu       | hangzhou |
     | tx          | hangzhou |
     +-------------+----------+
     4 rows in set (0.00 sec)
    

    mysql> select * from table2;
    +----------+-------------+
    | order_id | customer_id |
    +----------+-------------+
    | 1 | 163 |
    | 2 | 163 |
    | 3 | 9you |
    | 4 | 9you |
    | 5 | 9you |
    | 6 | tx |
    | 7 | NULL |
    +----------+-------------+
    7 rows in set (0.00 sec)

    复制代码

    5.准备SQL逻辑查询测试语句

    1
    2
    3
    4
    5
    6
    7
    8
    9
    SELECT
        a.customer_id,
        COUNT(b.order_id) as total_orders
    FROM table1 AS a  LEFT JOIN table2 AS b
    ON a.customer_id = b.customer_id
    WHERE a.city = 'hangzhou'
    GROUP BY a.customer_id
    HAVING count(b.order_id) < 2
    ORDER BY total_orders DESC;     

    SQL语句解释: 获得来自杭州,并且订单数少于2的客户

     三.SQL逻辑查询语句执行顺序

    还记得上面给出的那一长串的SQL逻辑查询规则么?那么,到底哪个先执行,哪个后执行呢?现在,我先给出一个查询语句的执行顺序:

    复制代码
    (7)     SELECT 
    (8)     DISTINCT <select_list>
    (1)     FROM <left_table>
    (3)     <join_type> JOIN <right_table>
    (2)     ON <join_condition>
    (4)     WHERE <where_condition>
    (5)     GROUP BY <group_by_list>
    (6)     HAVING <having_condition>
    (9)     ORDER BY <order_by_condition>
    (10)    LIMIT <limit_number>
    复制代码

    上面在每条语句的前面都标明了执行顺序号,不要问我怎么知道这个顺序的。我也是读各种“武林秘籍”才得知的. 如果你有功夫,去阅读一下MySQL的源码,也会得出这个结果的

     四.SQL执行先后顺序分析

    重点:

      在这些SQL语句的执行过程中,都会产生一个虚拟表,用来保存SQL语句的执行结果(这是重点),我们现在就来跟踪这个虚拟表的变化,得到最终的查询结果的过程,来分析整个SQL逻辑查询的执行顺序和过程。

    1.执行FROM语句

    第一步,执行FROM语句。我们首先需要知道最开始从哪个表开始的,这就是FROM告诉我们的。现在有了<left_table><right_table>两个表,我们到底从哪个表开始,还是从两个表进行某种联系以后再开始呢?它们之间如何产生联系呢?——笛卡尔积

    经过FROM语句对两个表执行笛卡尔积,会得到一个虚拟表,暂且叫VT1(vitual table 1),内容如下:

    复制代码
    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 9you        | shanghai |        1 | 163         |
    | baidu       | hangzhou |        1 | 163         |
    | tx          | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | 9you        | shanghai |        2 | 163         |
    | baidu       | hangzhou |        2 | 163         |
    | tx          | hangzhou |        2 | 163         |
    | 163         | hangzhou |        3 | 9you        |
    | 9you        | shanghai |        3 | 9you        |
    | baidu       | hangzhou |        3 | 9you        |
    | tx          | hangzhou |        3 | 9you        |
    | 163         | hangzhou |        4 | 9you        |
    | 9you        | shanghai |        4 | 9you        |
    | baidu       | hangzhou |        4 | 9you        |
    | tx          | hangzhou |        4 | 9you        |
    | 163         | hangzhou |        5 | 9you        |
    | 9you        | shanghai |        5 | 9you        |
    | baidu       | hangzhou |        5 | 9you        |
    | tx          | hangzhou |        5 | 9you        |
    | 163         | hangzhou |        6 | tx          |
    | 9you        | shanghai |        6 | tx          |
    | baidu       | hangzhou |        6 | tx          |
    | tx          | hangzhou |        6 | tx          |
    | 163         | hangzhou |        7 | NULL        |
    | 9you        | shanghai |        7 | NULL        |
    | baidu       | hangzhou |        7 | NULL        |
    | tx          | hangzhou |        7 | NULL        |
    +-------------+----------+----------+-------------+
    复制代码

    总共有28(table1的记录条数 * table2的记录条数)条记录。这就是VT1的结果,接下来的操作就在VT1的基础上进行。

    2.执行ON过滤

    执行完笛卡尔积以后,接着就进行ON a.customer_id = b.customer_id条件过滤,根据ON中指定的条件,去掉那些不符合条件的数据,得到VT2表,内容如下:

    复制代码
    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | 9you        | shanghai |        3 | 9you        |
    | 9you        | shanghai |        4 | 9you        |
    | 9you        | shanghai |        5 | 9you        |
    | tx          | hangzhou |        6 | tx          |
    +-------------+----------+----------+-------------+
    复制代码

    T2就是经过ON条件筛选以后得到的有用数据,而接下来的操作将在VT2的基础上继续进行。

    3.添加外部行

    这一步只有在连接类型为OUTER JOIN时才发生,如LEFT OUTER JOINRIGHT OUTER JOIN。在大多数的时候,我们都是会省略掉OUTER关键字的,但OUTER表示的就是外部行的概念。

    LEFT OUTER JOIN把左表记为保留表,得到的结果为:

    复制代码
    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | 9you        | shanghai |        3 | 9you        |
    | 9you        | shanghai |        4 | 9you        |
    | 9you        | shanghai |        5 | 9you        |
    | tx          | hangzhou |        6 | tx          |
    | baidu       | hangzhou |     NULL | NULL        |
    +-------------+----------+----------+-------------+
    复制代码

    RIGHT OUTER JOIN把右表记为保留表,得到的结果为:

    复制代码
    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | 9you        | shanghai |        3 | 9you        |
    | 9you        | shanghai |        4 | 9you        |
    | 9you        | shanghai |        5 | 9you        |
    | tx          | hangzhou |        6 | tx          |
    | NULL        | NULL     |        7 | NULL        |
    +-------------+----------+----------+-------------+
    复制代码

    添加外部行的工作就是在VT2表的基础上添加保留表中被过滤条件过滤掉的数据,非保留表中的数据被赋予NULL值,最后生成虚拟表VT3。

    由于我在准备的测试SQL查询逻辑语句中使用的是LEFT JOIN,过滤掉了以下这条数据:

    | baidu       | hangzhou |     NULL | NULL        |

    现在就把这条数据添加到VT2表中,得到的VT3表如下:

    复制代码
    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | 9you        | shanghai |        3 | 9you        |
    | 9you        | shanghai |        4 | 9you        |
    | 9you        | shanghai |        5 | 9you        |
    | tx          | hangzhou |        6 | tx          |
    | baidu       | hangzhou |     NULL | NULL        |
    +-------------+----------+----------+-------------+
    复制代码

    接下来的操作都会在该VT3表上进行。

    4.执行WHERE过滤

    对添加外部行得到的VT3进行WHERE过滤,只有符合<where_condition>的记录才会输出到虚拟表VT4中。当我们执行WHERE a.city = 'hangzhou'的时候,就会得到以下内容,并存在虚拟表VT4中:

    复制代码
    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | 163         | hangzhou |        2 | 163         |
    | tx          | hangzhou |        6 | tx          |
    | baidu       | hangzhou |     NULL | NULL        |
    +-------------+----------+----------+-------------+
    复制代码

    但是在使用WHERE子句时,需要注意以下两点:

    1. 由于数据还没有分组,因此现在还不能在WHERE过滤器中使用where_condition=MIN(col)这类对分组统计的过滤;
    2. 由于还没有进行列的选取操作,因此在SELECT中使用列的别名也是不被允许的,如:SELECT city as c FROM t WHERE c='shanghai';是不允许出现的。

    5.执行GROUP BY分组

    GROU BY子句主要是对使用WHERE子句得到的虚拟表进行分组操作。我们执行测试语句中的GROUP BY a.customer_id,就会得到以下内容:

    复制代码
    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | 163         | hangzhou |        1 | 163         |
    | baidu       | hangzhou |     NULL | NULL        |
    | tx          | hangzhou |        6 | tx          |
    +-------------+----------+----------+-------------+
    复制代码

    得到的内容会存入虚拟表VT5中,此时,我们就得到了一个VT5虚拟表,接下来的操作都会在该表上完成。

    6.执行HAVING过滤

    HAVING子句主要和GROUP BY子句配合使用,对分组得到的VT5虚拟表进行条件过滤。当我执行测试语句中的HAVING count(b.order_id) < 2时,将得到以下内容:

    复制代码
    +-------------+----------+----------+-------------+
    | customer_id | city     | order_id | customer_id |
    +-------------+----------+----------+-------------+
    | baidu       | hangzhou |     NULL | NULL        |
    | tx          | hangzhou |        6 | tx          |
    +-------------+----------+----------+-------------+
    复制代码

    这就是虚拟表VT6。

    7.SELECT列表

    现在才会执行到SELECT子句,不要以为SELECT子句被写在第一行,就是第一个被执行的。

    我们执行测试语句中的SELECT a.customer_id, COUNT(b.order_id) as total_orders,从虚拟表VT6中选择出我们需要的内容。我们将得到以下内容:

    复制代码
    +-------------+--------------+
    | customer_id | total_orders |
    +-------------+--------------+
    | baidu       |            0 |
    | tx          |            1 |
    +-------------+--------------+
    复制代码

    不,还没有完,这只是虚拟表VT7。

    8.执行DISTINCT子句

    如果在查询中指定了DISTINCT子句,则会创建一张内存临时表(如果内存放不下,就需要存放在硬盘了)。这张临时表的表结构和上一步产生的虚拟表VT7是一样的,不同的是对进行DISTINCT操作的列增加了一个唯一索引,以此来除重复数据。

    由于我的测试SQL语句中并没有使用DISTINCT,所以,在该查询中,这一步不会生成一个虚拟表。

    9.执行ORDER BY子句

    对虚拟表中的内容按照指定的列进行排序,然后返回一个新的虚拟表,我们执行测试SQL语句中的ORDER BY total_orders DESC,就会得到以下内容:

    复制代码
    +-------------+--------------+
    | customer_id | total_orders |
    +-------------+--------------+
    | tx          |            1 |
    | baidu       |            0 |
    +-------------+--------------+
    复制代码

    可以看到这是对total_orders列进行降序排列的。上述结果会存储在VT8中。

    10.执行LIMIT子句

    LIMIT子句从上一步得到的VT8虚拟表中选出从指定位置开始的指定行数据。对于没有应用ORDER BY的LIMIT子句,得到的结果同样是无序的,所以,很多时候,我们都会看到LIMIT子句会和ORDER BY子句一起使用。

    MySQL数据库的LIMIT支持如下形式的选择:

    LIMIT n, m

    表示从第n条记录开始选择m条记录。而很多开发人员喜欢使用该语句来解决分页问题。对于小数据,使用LIMIT子句没有任何问题,当数据量非常大的时候,使用LIMIT n, m是非常低效的。因为LIMIT的机制是每次都是从头开始扫描,如果需要从第60万行开始,读取3条数据,就需要先扫描定位到60万行,然后再进行读取,而扫描的过程是一个非常低效的过程。所以,对于大数据处理时,是非常有必要在应用层建立一定的缓存机制(貌似现在的大数据处理,都有缓存哦).

  • 相关阅读:
    禁止修改的消息首部
    文章详情列表接口 小程序及 模拟器 条数 错误 浏览器正确 调大mysql 查询超时时间 同一接口,小程序环境的TTFB相比浏览器约大5倍。
    七牛云霍锴:实时音视频 SDK 设计实践
    java网页数据抓取
    IDEA properties文件中文自动转为ASCII码(properties输入中文乱码问题)
    阿里官方Java代码规范标准《阿里巴巴Java开发手册 终极版 v1.3.0》下载
    从零开始配置Ubuntu20.04 amd64 virtualenvwarapper angr环境 并做ais3_crackme的CFG图
    请求被中止: 未能创建 SSL/TLS 安全通道 解决方案
    Docker
    爬虫
  • 原文地址:https://www.cnblogs.com/Durant0420/p/15267470.html
Copyright © 2011-2022 走看看