zoukankan      html  css  js  c++  java
  • LeetCode 1043. Partition Array for Maximum Sum

    原题链接在这里:https://leetcode.com/problems/partition-array-for-maximum-sum/

    题目:

    Given an integer array A, you partition the array into (contiguous) subarrays of length at most K.  After partitioning, each subarray has their values changed to become the maximum value of that subarray.

    Return the largest sum of the given array after partitioning.

    Example 1:

    Input: A = [1,15,7,9,2,5,10], K = 3
    Output: 84
    Explanation: A becomes [15,15,15,9,10,10,10]

    Note:

    1. 1 <= K <= A.length <= 500
    2. 0 <= A[i] <= 10^6

    题解:

    When encounter such kind of problem.

    Could think from a simpler example. Say only one element, then 2 elements and more. Virtualize them, find routines.

    Use array dp to memorize maxmimum sum up to i.

    If, A = [1], then A becomes A[1]. dp = [1].

    A = [1, 15], then A becomes A[15, 15]. dp = [1, 30].

    A = [1, 15, 7], then A becomes A[15, 15, 15]. dp = [1, 30, 45].

    A = [1, 15, 7, 9], then A becomes A[15, 15, 15, 9]. dp = [1, 30, 45, 54].

    ...

    The routine is like from i back k(<= K) steps, find the maxmimum element, curMax * k + dp[i-k](if available).

    Finally return dp[A.length-1].

    Time Complexity: O(n*K). n = A.length.

    Space: O(n).

    AC Java:

     1 class Solution {
     2     public int maxSumAfterPartitioning(int[] A, int K) {
     3         int len = A.length;
     4         int [] dp = new int[len];
     5         for(int i = 0; i<len; i++){
     6             dp[i] = Integer.MIN_VALUE;
     7             int curMax = A[i];
     8             
     9             for(int k = 1; k<=K & i-k+1>=0; k++){
    10                 curMax = Math.max(curMax, A[i-k+1]);
    11                 dp[i] = Math.max(dp[i], (i-k<0 ? 0 : dp[i-k]) + curMax*k);
    12             }
    13         }
    14         
    15         return dp[len-1];
    16     }
    17 }
  • 相关阅读:
    斐波那契数列
    用两个栈实现队列
    从尾到头打印链表
    HDOJ5877(dfs序+离散化+树状数组)
    HDOJ5876(补图的最短路)
    POJ3090(欧拉函数)
    POJ2478(欧拉函数)
    POJ2407(欧拉函数)
    POJ2142(扩展欧几里得)
    POJ3020(最小边覆盖)
  • 原文地址:https://www.cnblogs.com/Dylan-Java-NYC/p/11300836.html
Copyright © 2011-2022 走看看