zoukankan      html  css  js  c++  java
  • LeetCode 1043. Partition Array for Maximum Sum

    原题链接在这里:https://leetcode.com/problems/partition-array-for-maximum-sum/

    题目:

    Given an integer array A, you partition the array into (contiguous) subarrays of length at most K.  After partitioning, each subarray has their values changed to become the maximum value of that subarray.

    Return the largest sum of the given array after partitioning.

    Example 1:

    Input: A = [1,15,7,9,2,5,10], K = 3
    Output: 84
    Explanation: A becomes [15,15,15,9,10,10,10]

    Note:

    1. 1 <= K <= A.length <= 500
    2. 0 <= A[i] <= 10^6

    题解:

    When encounter such kind of problem.

    Could think from a simpler example. Say only one element, then 2 elements and more. Virtualize them, find routines.

    Use array dp to memorize maxmimum sum up to i.

    If, A = [1], then A becomes A[1]. dp = [1].

    A = [1, 15], then A becomes A[15, 15]. dp = [1, 30].

    A = [1, 15, 7], then A becomes A[15, 15, 15]. dp = [1, 30, 45].

    A = [1, 15, 7, 9], then A becomes A[15, 15, 15, 9]. dp = [1, 30, 45, 54].

    ...

    The routine is like from i back k(<= K) steps, find the maxmimum element, curMax * k + dp[i-k](if available).

    Finally return dp[A.length-1].

    Time Complexity: O(n*K). n = A.length.

    Space: O(n).

    AC Java:

     1 class Solution {
     2     public int maxSumAfterPartitioning(int[] A, int K) {
     3         int len = A.length;
     4         int [] dp = new int[len];
     5         for(int i = 0; i<len; i++){
     6             dp[i] = Integer.MIN_VALUE;
     7             int curMax = A[i];
     8             
     9             for(int k = 1; k<=K & i-k+1>=0; k++){
    10                 curMax = Math.max(curMax, A[i-k+1]);
    11                 dp[i] = Math.max(dp[i], (i-k<0 ? 0 : dp[i-k]) + curMax*k);
    12             }
    13         }
    14         
    15         return dp[len-1];
    16     }
    17 }
  • 相关阅读:
    「赛后总结」Codeforces Round #680 (Div. 2)
    雲雀
    「题解」洛谷 P1494 [国家集训队]小Z的袜子
    NOIP 2020 退役记
    任务查询系统「主席树+差分」
    组合「欧拉路」
    AtCoder 123 Triangle「思维题」
    旅行(加强版)「基环树」
    一个简单的询问「莫队」
    [HNOI2012]永无乡「线段树合并」
  • 原文地址:https://www.cnblogs.com/Dylan-Java-NYC/p/11300836.html
Copyright © 2011-2022 走看看