zoukankan      html  css  js  c++  java
  • LintCode Coins in a Line III

    原题链接在这里:http://www.lintcode.com/en/problem/coins-in-a-line-iii/

    题目:

    There are n coins in a line. Two players take turns to take a coin from one of the ends of the line until there are no more coins left. The player with the larger amount of money wins.

    Could you please decide the first player will win or lose?

    Example

    Given array A = [3,2,2], return true.

    Given array A = [1,2,4], return true.

    Given array A = [1,20,4], return false.

    题解:

    类似Coins in a Line II.

    DP问题. 状态dp[l][r]第i到第j的硬币时,先手去硬币的人最后最多去硬币价值.

    转移方程, pickLeft = min(dp[l+2][r], dp[l+1][r-1])+values[l]

         pickRight = min(dp[l][r-2], dp[l-1][r-1])+values[r]

         dp[l][r] = max(pickLeft, pickRight)

    初始化l == r时, dp[l][r] = values[l]

            l+1 == r时, dp[l][r] = max(values[l], values[l+1])

    答案dp[0][values.length-1] > sum/2

    Time Complexity: O(n^2), 有n^2个状态需要去计算. Space: O(n^2).

    AC Java:

     1 public class Solution {
     2     /**
     3      * @param values: an array of integers
     4      * @return: a boolean which equals to true if the first player will win
     5      */
     6     public boolean firstWillWin(int[] values) {
     7         if(values == null || values.length == 0){
     8             return false;
     9         }
    10         
    11         int n = values.length;
    12         int [][] dp = new int[n][n];
    13         boolean [][] used = new boolean[n][n];
    14         int sum = 0;
    15         for(int val : values){
    16             sum += val;
    17         }
    18         return sum < 2*memorySearch(values, 0, values.length-1, dp, used);
    19     }
    20     
    21     private int memorySearch(int [] values, int l, int r, int [][] dp, boolean [][] used){
    22         if(used[l][r]){
    23             return dp[l][r];
    24         }
    25         used[l][r] = true;
    26         if(l>r){
    27             dp[l][r] = 0;
    28         }else if(l == r){
    29             dp[l][r] = values[l];
    30         }else if(l + 1 == r){
    31             dp[l][r] = Math.max(values[l], values[l+1]);
    32         }else{
    33             int pickLeft = Math.min(memorySearch(values, l+2, r, dp, used), memorySearch(values, l+1, r-1, dp, used)) + values[l];
    34             int pickRight = Math.min(memorySearch(values, l+1, r-1, dp, used), memorySearch(values, l, r-2, dp, used)) + values[r];
    35             dp[l][r] = Math.max(pickLeft, pickRight);
    36         }
    37         return dp[l][r];
    38     }
    39 }
  • 相关阅读:
    Python学习
    我的计算机网络复习笔记(第一章)
    理解DES算法
    彻底理解RSA加密算法
    扩展欧几里得算法求模的乘法逆元
    python的deque(双向)队列详解
    对于暴力枚举的一些优化方法的题解
    python中的多(liu)元(mang)交换 ,赋值
    python定义函数后跟->的意义
    直接暴力做分糖问题
  • 原文地址:https://www.cnblogs.com/Dylan-Java-NYC/p/6410366.html
Copyright © 2011-2022 走看看