zoukankan      html  css  js  c++  java
  • LeetCode 673. Number of Longest Increasing Subsequence

    原题链接在这里:https://leetcode.com/problems/number-of-longest-increasing-subsequence/description/

    题目:

    Given an unsorted array of integers, find the number of longest increasing subsequence.

    Example 1:

    Input: [1,3,5,4,7]
    Output: 2
    Explanation: The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7].

    Example 2:

    Input: [2,2,2,2,2]
    Output: 5
    Explanation: The length of longest continuous increasing subsequence is 1, and there are 5 subsequences' length is 1, so output 5.

    Note: Length of the given array will be not exceed 2000 and the answer is guaranteed to be fit in 32-bit signed int.

    题解:

    len[i] reqpresents到i的LIS长度. count[i] represents 到i的LIS个数.

    Base Case 都是1.

    For all j from 0 to i, if nums[j] < nums[i], there is a chance to update longest length ending at i.

    If there is an update, then update len[i] with len[j]+1 and frequency = count[j].

    If there is no update, but len[j]+1 == len[i] means there is other paths to construct LIS ending at i, thus accumlate frequency.

    After iterating all j, if longest LIS got update, then update max length, and its frequency.

    If max length stays the same, that means globally there is other LIS with the same length, accumate frequency. 

    Time Complexity: O(n^2), n = nums.length.

    Space: O(n).

    AC Java: 

     1 class Solution {
     2     public int findNumberOfLIS(int[] nums) {
     3         if(nums == null || nums.length == 0){
     4             return 0;
     5         }
     6         
     7         int n = nums.length;
     8         // Longest length ending at i
     9         int [] len = new int[n];
    10         
    11         // Frequency of longest length ending at i
    12         int [] count = new int[n];
    13         int max = 1;
    14         int res = 0;
    15         
    16         for(int i = 0; i<n; i++){
    17             len[i] = 1;
    18             count[i] = 1;
    19             for(int j = 0; j<i; j++){
    20                 if(nums[j] < nums[i]){
    21                     if(len[j]+1 == len[i]){
    22                         // Same longest length ending at i, accumlate frequency
    23                         count[i] += count[j];
    24                     }else if(len[j]+1 > len[i]){
    25                         // There is longer subsequence ending at i, update its longest length and frequency
    26                         len[i] = len[j]+1;
    27                         count[i] = count[j];
    28                     }
    29                 }
    30             }
    31             
    32             if(len[i] > max){
    33                 // Globally, this one is longer, update global maximum length and its requency
    34                 max = len[i];
    35                 res = count[i];
    36             }else if(len[i] == max){
    37                 // Globally, this one has the same maximum length, accumlate its frequency to res
    38                 res += count[i];
    39             }
    40         }
    41         
    42         return res;
    43     }
    44 }

    Longest Increasing SubsequenceLongest Continuous Increasing Subsequence 的进阶题.

    跟上Minimum Window Subsequence.

  • 相关阅读:
    C# 数据库连接字符串拼接
    C# 线程同步计数存在的问题
    字符串操作
    字符串位置
    6个基本函数
    占位符
    str转换成int
    python运算符6
    python运算符5
    python运算符4
  • 原文地址:https://www.cnblogs.com/Dylan-Java-NYC/p/7530636.html
Copyright © 2011-2022 走看看