zoukankan      html  css  js  c++  java
  • LeetCode Optimal Division

    原题链接在这里:https://leetcode.com/problems/optimal-division/description/

    题目:

    Given a list of positive integers, the adjacent integers will perform the float division. For example, [2,3,4] -> 2 / 3 / 4.

    However, you can add any number of parenthesis at any position to change the priority of operations. You should find out how to add parenthesis to get the maximum result, and return the corresponding expression in string format. Your expression should NOT contain redundant parenthesis.

    Example:

    Input: [1000,100,10,2]
    Output: "1000/(100/10/2)"
    Explanation:
    1000/(100/10/2) = 1000/((100/10)/2) = 200
    However, the bold parenthesis in "1000/((100/10)/2)" are redundant, 
    since they don't influence the operation priority. So you should return "1000/(100/10/2)". Other cases: 1000/(100/10)/2 = 50 1000/(100/(10/2)) = 50 1000/100/10/2 = 0.5 1000/100/(10/2) = 2

    Note:

    1. The length of the input array is [1, 10].
    2. Elements in the given array will be in range [2, 1000].
    3. There is only one optimal division for each test case.

    题解:

    backtracking. a/b 最大需要尽可能最大化a 同时最小化b.

    dfs的终止条件是只有一个或者两个元素.

    Time Complexity: exponential.

    Space: O(nums.length). stack space.

    AC Java:

     1 class Solution {
     2     class Result{
     3         double val;
     4         String str;
     5     }
     6     public String optimalDivision(int[] nums) {
     7         return getMax(nums, 0, nums.length-1).str;
     8     }
     9     
    10     private Result getMax(int [] nums, int l, int r){
    11         Result result = new Result();
    12         result.val = Double.MIN_VALUE;
    13         if(l == r){
    14             result.val = nums[l];
    15             result.str = String.valueOf(nums[l]);
    16             return result;
    17         }
    18         
    19         if(l+1 == r){
    20             result.val = (double)nums[l] / (double)nums[r];
    21             result.str = nums[l] + "/" + nums[r];
    22             return result;
    23         }
    24         
    25         for(int i = l; i<r; i++){
    26             Result r1 = getMax(nums, l, i);
    27             Result r2 = getMin(nums, i+1, r);
    28             if(r1.val/r2.val > result.val){
    29                 result.val = r1.val/r2.val;
    30                 result.str = r1.str + "/" + (r-(i+1) == 0 ? r2.str : "("+r2.str+")");
    31             }
    32         }
    33         return result;
    34     }
    35     
    36     private Result getMin(int [] nums, int l, int r){
    37         Result result = new Result();
    38         result.val = Double.MAX_VALUE;
    39         if(l == r){
    40             result.val = nums[l];
    41             result.str = String.valueOf(nums[l]);
    42             return result;
    43         }
    44         
    45         if(l+1 == r){
    46             result.val = (double)nums[l] / (double)nums[r];
    47             result.str = nums[l] + "/" + nums[r];
    48             return result;
    49         }
    50         
    51         for(int i = l; i<r; i++){
    52             Result r1 = getMin(nums, l, i);
    53             Result r2 = getMax(nums, i+1, r);
    54             if(r1.val/r2.val < result.val){
    55                 result.val = r1.val/r2.val;
    56                 result.str = r1.str + "/" + (r-(i+1) == 0 ? r2.str : "("+r2.str+")");
    57             }
    58         }
    59         return result;
    60     }
    61 }

    a/b最大时a要最大, b要最小. 

    每个数都大于1, 所以除个数肯定不比自己本上大. 所以a就是第一个数.

    越除越小, 所以每个数都不能放过. b就是剩下的每个数以此相除.

    Time Complexity: O(nums.length).

    Space: O(nums.length).

    AC Java:

     1 class Solution {
     2     public String optimalDivision(int[] nums) {
     3         StringBuilder sb = new StringBuilder();
     4         if(nums == null || nums.length == 0){
     5             return sb.toString();
     6         }
     7         
     8         if(nums.length == 1){
     9             return nums[0]+"";
    10         }
    11         if(nums.length == 2){
    12             return nums[0] + "/" + nums[1];
    13         }
    14         
    15         sb.append(nums[0]+"/("+nums[1]);
    16         for(int i = 2; i<nums.length; i++){
    17             sb.append("/"+nums[i]);
    18         }
    19         
    20         return sb.append(")").toString();
    21     }
    22 }
  • 相关阅读:
    第十三节:实际开发中使用最多的监视锁Monitor、lock语法糖的扩展、混合锁的使用(ManualResetEvent、SemaphoreSlim、ReaderWriterLockSlim)
    第十二节:深究内核模式锁的使用场景(自动事件锁、手动事件锁、信号量、互斥锁、读写锁、动态锁)
    第十一节:深究用户模式锁的使用场景(异变结构、互锁、旋转锁)
    第十节:利用async和await简化异步编程模式的几种写法
    第九节:深究并行编程Parallel类中的三大方法 (For、ForEach、Invoke)和几大编程模型(SPM、APM、EAP、TAP)
    C# DataTable列名不区分大小写
    如何很好的使用Linq的Distinct方法
    Java读写记事本文件
    c# 获取方法所在的命名空间 类名 方法名
    C#中类的序列化和反序列化
  • 原文地址:https://www.cnblogs.com/Dylan-Java-NYC/p/7721739.html
Copyright © 2011-2022 走看看