zoukankan      html  css  js  c++  java
  • LeetCode 675. Cut Off Trees for Golf Event

    原题链接在这里:https://leetcode.com/problems/cut-off-trees-for-golf-event/

    题目:

    You are asked to cut off trees in a forest for a golf event. The forest is represented as a non-negative 2D map, in this map:

    1. 0 represents the obstacle can't be reached.
    2. 1 represents the ground can be walked through.
    3. The place with number bigger than 1 represents a tree can be walked through, and this positive number represents the tree's height.

    You are asked to cut off all the trees in this forest in the order of tree's height - always cut off the tree with lowest height first. And after cutting, the original place has the tree will become a grass (value 1).

    You will start from the point (0, 0) and you should output the minimum steps you need to walk to cut off all the trees. If you can't cut off all the trees, output -1 in that situation.

    You are guaranteed that no two trees have the same height and there is at least one tree needs to be cut off.

    Example 1:

    Input: 
    [
     [1,2,3],
     [0,0,4],
     [7,6,5]
    ]
    Output: 6

    Example 2:

    Input: 
    [
     [1,2,3],
     [0,0,0],
     [7,6,5]
    ]
    Output: -1

    Example 3:

    Input: 
    [
     [2,3,4],
     [0,0,5],
     [8,7,6]
    ]
    Output: 6
    Explanation: You started from the point (0,0) and you can cut off the tree in (0,0) directly without walking.

    题解:

    用minHeap把树连着坐标高度都保存起来. poll出lowest tree, 用BFS算出起点坐标到lowest tree坐标距离加入res中. 

    Time Complexity: O(m^2 * n^2). m = forest.size(). n = forest.get(0).size(). 最多有m*n棵树, 每个树poll出来后BFS用时O(m*n).

    Space: O(m^n). minHeap, que size.

    AC Java:

     1 class Solution {
     2     int [][] dirs = {{0,1},{0,-1},{1,0},{-1,0}};
     3     
     4     public int cutOffTree(List<List<Integer>> forest) {
     5         if(forest == null || forest.size() == 0 || forest.get(0).size() == 0){
     6             return 0;
     7         }
     8         
     9         int m = forest.size();
    10         int n = forest.get(0).size();
    11         
    12         PriorityQueue<int []> minHeap = new PriorityQueue<int []>((a, b) -> a[2] - b[2]);
    13         for(int i = 0; i<m; i++){
    14             for(int j = 0; j<n; j++){
    15                 if(forest.get(i).get(j) > 1){   // error
    16                     minHeap.add(new int[]{i, j, forest.get(i).get(j)});
    17                 }
    18             }
    19         }
    20         
    21         int [] start = new int[2];
    22         int res = 0;
    23         while(!minHeap.isEmpty()){
    24             int [] lowest = minHeap.poll();
    25             int step = minStep(forest, start, lowest, m, n);
    26             if(step < 0){
    27                 return -1;
    28             }
    29             
    30             res += step;
    31             start[0] = lowest[0];
    32             start[1] = lowest[1];
    33         }
    34         
    35         return res;
    36     }
    37        
    38     private int minStep(List<List<Integer>> forest, int [] start, int [] lowest, int m, int n){
    39         int step = 0;
    40         
    41         LinkedList<int []> que = new LinkedList<int []>();
    42         boolean [][] used = new boolean[m][n];
    43         
    44         que.add(start);
    45         used[start[0]][start[1]] = true;
    46         while(!que.isEmpty()){
    47             int size = que.size();
    48             for(int i = 0; i<size; i++){
    49                 int [] cur = que.poll();
    50                 if(cur[0] == lowest[0] && cur[1] == lowest[1]){
    51                     return step;
    52                 }
    53                 
    54                 for(int [] dir : dirs){
    55                     int nx = cur[0] + dir[0];
    56                     int ny = cur[1] + dir[1];
    57                     if(nx<0 || nx>=m || ny<0 || ny>=n || used[nx][ny] || forest.get(nx).get(ny)==0){
    58                         continue;
    59                     }
    60                     
    61                     que.add(new int[]{nx, ny});
    62                     used[nx][ny] = true;
    63                 }
    64             }
    65             
    66             step++;
    67         }
    68         
    69         return -1;
    70     }
    71 }
  • 相关阅读:
    java实现微信红包分配算法
    认识J2SE
    java设计模式(2)
    java设计模式(1)
    模拟做饭系统(java+线程中的join方法)
    学习接水系统(java+thread线程)
    1. linux系统简介
    Codeforces Round #350 (Div. 2)解题报告
    2014蓝桥杯决赛解题报告
    末学者笔记--Python函数一玄
  • 原文地址:https://www.cnblogs.com/Dylan-Java-NYC/p/8385772.html
Copyright © 2011-2022 走看看