zoukankan      html  css  js  c++  java
  • LeetCode 675. Cut Off Trees for Golf Event

    原题链接在这里:https://leetcode.com/problems/cut-off-trees-for-golf-event/

    题目:

    You are asked to cut off trees in a forest for a golf event. The forest is represented as a non-negative 2D map, in this map:

    1. 0 represents the obstacle can't be reached.
    2. 1 represents the ground can be walked through.
    3. The place with number bigger than 1 represents a tree can be walked through, and this positive number represents the tree's height.

    You are asked to cut off all the trees in this forest in the order of tree's height - always cut off the tree with lowest height first. And after cutting, the original place has the tree will become a grass (value 1).

    You will start from the point (0, 0) and you should output the minimum steps you need to walk to cut off all the trees. If you can't cut off all the trees, output -1 in that situation.

    You are guaranteed that no two trees have the same height and there is at least one tree needs to be cut off.

    Example 1:

    Input: 
    [
     [1,2,3],
     [0,0,4],
     [7,6,5]
    ]
    Output: 6

    Example 2:

    Input: 
    [
     [1,2,3],
     [0,0,0],
     [7,6,5]
    ]
    Output: -1

    Example 3:

    Input: 
    [
     [2,3,4],
     [0,0,5],
     [8,7,6]
    ]
    Output: 6
    Explanation: You started from the point (0,0) and you can cut off the tree in (0,0) directly without walking.

    题解:

    用minHeap把树连着坐标高度都保存起来. poll出lowest tree, 用BFS算出起点坐标到lowest tree坐标距离加入res中. 

    Time Complexity: O(m^2 * n^2). m = forest.size(). n = forest.get(0).size(). 最多有m*n棵树, 每个树poll出来后BFS用时O(m*n).

    Space: O(m^n). minHeap, que size.

    AC Java:

     1 class Solution {
     2     int [][] dirs = {{0,1},{0,-1},{1,0},{-1,0}};
     3     
     4     public int cutOffTree(List<List<Integer>> forest) {
     5         if(forest == null || forest.size() == 0 || forest.get(0).size() == 0){
     6             return 0;
     7         }
     8         
     9         int m = forest.size();
    10         int n = forest.get(0).size();
    11         
    12         PriorityQueue<int []> minHeap = new PriorityQueue<int []>((a, b) -> a[2] - b[2]);
    13         for(int i = 0; i<m; i++){
    14             for(int j = 0; j<n; j++){
    15                 if(forest.get(i).get(j) > 1){   // error
    16                     minHeap.add(new int[]{i, j, forest.get(i).get(j)});
    17                 }
    18             }
    19         }
    20         
    21         int [] start = new int[2];
    22         int res = 0;
    23         while(!minHeap.isEmpty()){
    24             int [] lowest = minHeap.poll();
    25             int step = minStep(forest, start, lowest, m, n);
    26             if(step < 0){
    27                 return -1;
    28             }
    29             
    30             res += step;
    31             start[0] = lowest[0];
    32             start[1] = lowest[1];
    33         }
    34         
    35         return res;
    36     }
    37        
    38     private int minStep(List<List<Integer>> forest, int [] start, int [] lowest, int m, int n){
    39         int step = 0;
    40         
    41         LinkedList<int []> que = new LinkedList<int []>();
    42         boolean [][] used = new boolean[m][n];
    43         
    44         que.add(start);
    45         used[start[0]][start[1]] = true;
    46         while(!que.isEmpty()){
    47             int size = que.size();
    48             for(int i = 0; i<size; i++){
    49                 int [] cur = que.poll();
    50                 if(cur[0] == lowest[0] && cur[1] == lowest[1]){
    51                     return step;
    52                 }
    53                 
    54                 for(int [] dir : dirs){
    55                     int nx = cur[0] + dir[0];
    56                     int ny = cur[1] + dir[1];
    57                     if(nx<0 || nx>=m || ny<0 || ny>=n || used[nx][ny] || forest.get(nx).get(ny)==0){
    58                         continue;
    59                     }
    60                     
    61                     que.add(new int[]{nx, ny});
    62                     used[nx][ny] = true;
    63                 }
    64             }
    65             
    66             step++;
    67         }
    68         
    69         return -1;
    70     }
    71 }
  • 相关阅读:
    使用C# lock同时访问共享数据
    将两个DataTable合并成一个DataTable
    嵌套存储过程返回值的调用
    在 Sql Server 中使用 MD5 加密
    用DIV制作即时提示层 防止被select控件遮挡的方法
    操作Cookie公用代码
    JS实现回调例子
    ASP存储过程参数数据类型
    在asp中使用js的encodeURIComponent方法
    Uva 10250 The Other Two Trees
  • 原文地址:https://www.cnblogs.com/Dylan-Java-NYC/p/8385772.html
Copyright © 2011-2022 走看看