zoukankan      html  css  js  c++  java
  • 记录B站yxc的背包九讲相关代码

    1.01背包

     

     

     

     

     

     

     

     

     

     

     

     

     

    #include<iostream> 
    #include <cstring> 
    using namespace std; 
    
    const int N = 1010; 
    int f[N]; 
    
    int main()
    {
        int n,m; 
        while(cin >> n >> m){
            int v,w; 
            for (int i= 0 ; i < n;i++){
                cin >> v >> w; 
                for(int j = m; j >= v;j--){
                    f[j] = max(f[j],f[j - v]+ w); 
                }
            }
            cout << f[m] << endl; 
        }
        return 0; 
    }

    2.完全背包

    #include<iostream>
    #include <bits/stdc++.h>
    using namespace std;
    const int N = 1010;
    int main()
    {
    	const int N = 1010;
    	vector<int> dp(N);
    	vector<int> v(N);
    	vector<int> w(N);
    
    	int n, m;
    	cin >> n >> m;
    	for (int i = 1; i <= n; i++)
    	{
    		cin >> v[i] >> w[i];
    	}
    
    	for (int i = 1; i <= n; i++)
    		for (int j = v[i]; j <= m; j++)
    		{
    			dp[j] = max(dp[j], dp[j - v[i]] + w[i]);
    		}
    	cout << dp[m] << endl;
    }

    3.多重背包I

    #include <iostream>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    using namespace std; 
    
    int n, m;
    const int N = 110;
    int f[N];
    int main() {
    	cin >> n >> m; 
    	for (int i = 0; i < n; i++) {
    		int v, w, s;
    		cin >> v >> w >> s;
    		for (int j = m; j >= 0; j--) {
    			for (int k = 1; k <= s && k * v <= j; k++) {
    				f[j] = max(f[j], f[j - k * v] + k * w);
    			}
    		}
    	}
    	cout << f[m] << endl;
    	return 0;
    } 

    4.多重背包II (二进制优化版本)

    #include <iostream> 
    #include <algorithm> 
    #include <cstring> 
    #include <vector>
    using namespace std; 
    
    const int N = 2010; 
    int f[N]; 
    
    struct Goods
    {
        int v; 
        int w; 
    }; 
    
    
    int main() {
            int n, m; 
            vector<Goods> goods;
            cin >> n >> m;
            for (int i = 0; i < n; i++) {
                   int v, w, s;
                   cin >> v >> w >> s;
                   for (int k = 1; k <= s; k *= 2) {
                           s -= k;  
                           goods.push_back({ v * k,w * k });
                   }
                   if (s > 0) goods.push_back({ v * s,w * s }); // 如果 s还有剩余的
            }
            for (auto good : goods) {
                   for (int j = m; j >= good.v; j--) {
                           f[j] = max(f[j], f[j - good.v] + good.w);  //转化为01背包
                   }
            }
            cout << f[m] << endl;
            return 0;
    }

    5.混合背包

    #include <iostream>
    #include <cstring>
    #include <vector>
    #include <algorithm>
    
    using namespace std;
    
    const int N = 1010;
    int n, m;
    int f[N];
    struct Thing {
    	int kind;
    	int v, w;
    };
    
    vector<Thing> things;
    
    int main() {
    	cin >> n >> m;
    	for (int i = 0; i < n; i++) {
    		int v, w, s;
    		cin >> v >> w >> s;
    		if (s < 0) { things.push_back({ -1,v,w }); } // 背包情况
    		else if (s == 0) {   // 完全背包
    			things.push_back({ 0,v,w });
    		}
    		else { // 多重背包利用二进制优化转 01背包
    			for (int k = 1; k <= s; k *= 2) {
    				s -= k;
    				things.push_back({ -1,k * v,k * w });
    			}
    			if (s > 0) {
    				things.push_back({ -1,s * v,s * w });
    			}
    		}
    	}
    	for (auto thing : things) {
    		if (thing.kind < 0) { // 01 背包从大到小遍历
    			for (int j = m; j >= thing.v; j--) {
    				f[j] = max(f[j], f[j - thing.v] + thing.w);
    			}
    		}
    		else { // 完全背包,从小到大遍历
    			for (int j = thing.v; j <= m; j++) {
    				f[j] = max(f[j], f[j - thing.v] + thing.w);
    			}
    		}
    	}
    	cout << f[m] << endl;
    	return 0;
    }

    6.二维背包费用问题(两个约束——体积和重量约束)

    #include <iostream>
    #include<algorithm>
    #include <cstring>
    
    using namespace std; 
    const int N = 110; 
    int n, v, m; 
    int f[N][N]; 
    
    int main() {
    	cin >> n >> v >> m; 
    	for (int i = 0; i < n; i++) {
    		int a, b, c; 
    		cin >> a >> b >> c; 
    		for (int j = v; j >= a; j--) {
    			for (int k = m; k >= b; k--) {
    				f[j][k] = max(f[j][k], f[j - a][k - b] + c); 
    			}
    		}
    	}
    	cout << f[v][m] << endl; 
    	return 0; 
    }

    7.分组背包

    #include <iostream>
    #include <algorithm>
    #include <cstring>
    using namespace std; 
    
    
    const int N = 110; 
    int f[N], v[N], w[N]; 
    
    int n, m; 
    
    int main() {
    	cin >> n >> m; 
    	for (int i = 0; i < n; i++) { // 循环物品组数
    		int s; 
    		cin >> s; // 当前组物品数量
    		for (int j = 0; j < s; j++) {
    			cin >> v[j] >> w[j];  // 当前组内物品数的体积和价值
    		}
    		for (int j = m; j >= 0; j--) { 
    			for (int k = 0; k < s; k++) { // 同一组内的物品只能选一个
    				if (j >= v[k]) {
    					f[j] = max(f[j], f[j - v[k]] + w[k]); 
    				}
    			}
    		}
    	}
    	cout << f[m] << endl; 
    	return 0; 
    }
    

    8.有依赖的背包问题

     

     代码来源:https://www.acwing.com/solution/acwing/content/8316/ 

    #include<iostream>
    #include<vector>
    using namespace std;
    int f[110][110];//f[x][v]表达选择以x为子树的物品,在容量不超过v时所获得的最大价值
    vector<int> g[110];
    int v[110], w[110];  //物品的体积、价值和依赖的物品编号(父节点)
    int n, m, root;
    int dfs(int x)
    {
            for (int i = v[x]; i <= m; i++) f[x][i] = w[x];//点x必须选,所以初始化f[x][v[x] ~  m]= w[x]
            for (int i = 0; i < g[x].size(); i++)
            {
                   int y = g[x][i];
                   dfs(y);
                   for (int j = m; j >= v[x]; j--)//j的范围为v[x]~m, 小于v[x]无法选择以x为子树的物品
                   {
                           for (int k = 0; k <= j - v[x]; k++)//分给子树y的空间不能大于j-v[x],不然都无法选根物品x
                           {
                                  f[x][j] = max(f[x][j], f[x][j - k] + f[y][k]);
                           }
                   }
            }
    }
    int main()
    {
            cin >> n >> m;
            for (int i = 1; i <= n; i++)
            {
                   int fa;
                   cin >> v[i] >> w[i] >> fa;
                   if (fa == -1)
                           root = i;
                   else
                           g[fa].push_back(i);
            }
            dfs(root);
            cout << f[root][m];
            return 0;
    }

    9.背包问题求方案数

    #include <iostream>
    #include <algorithm>
    using namespace std;
    const int N = 1010;
    const int mod = 1e9 + 7;
    int f[N];
    int cnt[N];
    int main() {
            int n, m;
            scanf("%d%d", &n, &m);
            for (int i = 0; i < n; i++) {
                   cnt[i] = 1; //什么都不装也是一种方案
            }
            for (int i = 1; i <= n; i++) {
                   int v, w;
                   scanf("%d%d", &v, &w);// 体积和价值
                   for (int j = m; j >= v; j--) {
                           int value = f[j - v] + w;
                           if (value > f[j]) {
                                  f[j] = value;
                                  cnt[j] = cnt[j - v];
                           }
                           else if (value == f[j]) {
                                  cnt[j] = (cnt[j] + cnt[j - v]) % mod;
                           }
                   }
            }
            printf("%d", cnt[m]);
            return 0;
    }
    

    10.背包问题求具体方案数

    #include<cstring>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    const int N = 1010;
    int f[N][N];
    int v[N], w[N];
    int n, m;
    int main()
    {
            cin >> n >> m;
            for (int i = 1; i <= n; i++)
                   cin >> v[i] >> w[i];
            for (int i = n; i >= 1; i--)
            {
                   for (int j = 0; j <= m; j++)
                   {
                           f[i][j] = f[i + 1][j];
                           if (j >= v[i])
                                  f[i][j] = max(f[i][j], f[i + 1][j - v[i]] + w[i]);
                   }
            }
            int cur_v = m;
            for (int i = 1; i <= n; i++)
            {   //如果是最后一个元素,特判一下,防止越界即可
                   if (i == n && cur_v >= v[i])
                   {
                           printf("%d ", i);
                           break;
                   }
                   if (cur_v <= 0)
                           break;
                   //判断下标是否越界
                   if (cur_v - v[i] >= 0 && f[i][cur_v] == f[i + 1][cur_v - v[i]] + w[i]) {
                           printf("%d ", i);
                           cur_v = cur_v - v[i];//选了第i个物品,剩余容量就要减小。
                   }
            }
            return 0;
    }
    

      

  • 相关阅读:
    尘埃里的路人乙
    SlidingMenu 插件的使用 二
    观察者模式
    Android SlidingMenu插件的使用
    Android4.2 的Http 多线程 网络传输
    Sliverlight界面研究1
    Sliverlight界面研究2
    图片切换效果(定时+编号)
    管理模型 RACI模型
    Enable NLA in XP
  • 原文地址:https://www.cnblogs.com/E-Dreamer-Blogs/p/12834300.html
Copyright © 2011-2022 走看看