zoukankan      html  css  js  c++  java
  • Uva 11178 Morley's Theorem 向量旋转+求直线交点

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=9

    题意:

    Morlery定理是这样的:作三角形ABC每个内角的三等分线。相交成三角形DEF。则DEF为等边三角形,你的任务是给你A,B,C点坐标求D,E,F的坐标

    思路:

    根据对称性,我们只要求出一个点其他点一样:我们知道三点的左边即可求出每个夹角,假设求D,我们只要将向量BC

    旋转rad/3的到直线BD,然后旋转向量CB然后得到CD,然后就是求两直线的交点了。

    #include <iostream>
    #include <cstdio>
    #include <cmath>
    #include <vector>
    #include <cstring>
    #include <algorithm>
    #include <string>
    #include <set>
    #include <functional>
    #include <numeric>
    #include <sstream>
    #include <stack>
    #include <map>
    #include <queue>
    
    #define CL(arr, val) memset(arr, val, sizeof(arr))
    
    #define lc l,m,rt<<1
    #define rc m + 1,r,rt<<1|1
    #define pi acos(-1.0)
    #define L(x)    (x) << 1
    #define R(x)    (x) << 1 | 1
    #define MID(l, r)   (l + r) >> 1
    #define Min(x, y)   (x) < (y) ? (x) : (y)
    #define Max(x, y)   (x) < (y) ? (y) : (x)
    #define E(x)        (1 << (x))
    #define iabs(x)     (x) < 0 ? -(x) : (x)
    #define OUT(x)  printf("%I64d
    ", x)
    #define lowbit(x)   (x)&(-x)
    #define Read()  freopen("din.txt", "r", stdin)
    #define Write() freopen("d.out", "w", stdout)
    #define ll unsigned long long
    #define keyTree (chd[chd[root][1]][0])
    
    #define M 100007
    #define N 300017
    
    using namespace std;
    
    const double eps = 1e-8;
    const int inf = 0x7f7f7f7f;
    const int mod = 1000000007;
    
    struct Point
    {
        double x,y;
        Point(double tx = 0,double ty = 0) : x(tx),y(ty){}
    };
    typedef Point Vtor;
    //向量的加减乘除
    Vtor operator + (Vtor A,Vtor B) { return Vtor(A.x + B.x,A.y + B.y); }
    Vtor operator - (Point A,Point B) { return Vtor(A.x - B.x,A.y - B.y); }
    Vtor operator * (Vtor A,double p) { return Vtor(A.x*p,A.y*p); }
    Vtor operator / (Vtor A,double p) { return Vtor(A.x/p,A.y/p); }
    bool operator < (Point A,Point B) { return A.x < B.x || (A.x == B.x && A.y < B.y);}
    int dcmp(double x){ if (fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; }
    bool operator == (Point A,Point B) {return dcmp(A.x - B.x) == 0 && dcmp(A.y - B.y) == 0; }
    //向量的点积,长度,夹角
    double Dot(Vtor A,Vtor B) { return A.x*B.x + A.y*B.y; }
    double Length(Vtor A) { return sqrt(Dot(A,A)); }
    double Angle(Vtor A,Vtor B) { return acos(Dot(A,B)/Length(A)/Length(B)); }
    //叉积,三角形面积
    double Cross(Vtor A,Vtor B) { return A.x*B.y - A.y*B.x; }
    double Area2(Point A,Point B,Point C) { return Cross(A - B,C - B); }
    //向量的旋转,求向量的单位法线(即左转90度,然后长度归一)
    Vtor Rotate(Vtor A,double rad){ return Vtor(A.x*cos(rad) - A.y*sin(rad),A.x*sin(rad) + A.y*cos(rad)); }
    Vtor Normal(Vtor A)
    {
        double L = Length(A);
        return Vtor(-A.y/L, A.x/L);
    }
    //直线的交点
    Point GetLineIntersection(Point P,Vtor v,Point Q,Vtor w)
    {
        Vtor u = P - Q;
        double t = Cross(w,u)/Cross(v,w);
        return P + v*t;
    }
    //点到直线的距离
    double DistanceToLine(Point P,Point A,Point B)
    {
        Vtor v1 = B - A;
        return Cross(P,v1)/Length(v1);
    }
    //点到线段的距离
    double DistanceToSegment(Point P,Point A,Point B)
    {
        if (A == B) return Length(P - A);
        Vtor v1 =  B - A , v2 = P - A, v3 = P - B;
        if (dcmp(Dot(v1,v2)) < 0) return Length(P - A);
        else if (dcmp(Dot(v1,v3)) > 0) return Length(P - B);
        else return Cross(v1,v2)/Length(v1);
    }
    //点到直线的映射
    Point GetLineProjection(Point P,Point A,Point B)
    {
        Vtor v = B - A;
        return A + v*Dot(v,P - A)/Dot(v,v);
    }
    
    //判断线段是否规范相交
    bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)
    {
        double c1 = Cross(a2 - a1,b1 - a1), c2 = Cross(a2 - a1,b2 - a1),
               c3 = Cross(a1 - a2,b1 - a1), c4 = Cross(a1 - a2,b2 - a2);
        return dcmp(c1)*dcmp(c2) < 0 && dcmp(c3)*dcmp(c4) < 0;
    }
    //判断点是否在一条线段上
    bool OnSegment(Point P,Point a1,Point a2)
    {
        return dcmp(Cross(a1 - P,a2 - P)) == 0 && dcmp(Dot(a1 - P,a2 - P)) < 0;
    }
    //多边形面积
    double PolgonArea(Point *p,int n)
    {
        double area = 0;
        for (int i = 1; i < n - 1; ++i)
        area += Cross(p[i] - p[0],p[i + 1] - p[0]);
        return area/2;
    }
    
    Point solve(Point A,Point B,Point C)
    {
        double rad1 = Angle(A - B, C - B)/3.0;
        Vtor v1 = C - B;
        v1 = Rotate(v1,rad1);
    
        double rad2 = Angle(A - C,B - C)/3.0;
        Vtor v2 = B - C;
        v2 = Rotate(v2,-rad2);
    
        return GetLineIntersection(B,v1,C,v2);
    }
    int main()
    {
    
    //    Read();
        int T;
        Point A,B,C;
        scanf("%d",&T);
        while (T--)
        {
            scanf("%lf%lf%lf%lf%lf%lf",&A.x,&A.y,&B.x,&B.y,&C.x,&C.y);
            Point D = solve(A,B,C);
            Point E = solve(B,C,A);
            Point F = solve(C,A,B);
    
            printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf
    ",D.x,D.y,E.x,E.y,F.x,F.y);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    java数据库连接池
    TCP长连接服务的Java实现
    一种简单JDBC数据库连接池的实现
    ProFtpd快速指南
    vsftpd安装
    IIS启动失败【发生意外错误 0x8ffe2740】解决办法
    eclipse+myeclipse+tomcat配置web开发
    数据库连接池技术浅析
    论JSP数据库连接池的必要性
    ProFTPD使用
  • 原文地址:https://www.cnblogs.com/E-star/p/3188059.html
Copyright © 2011-2022 走看看