zoukankan      html  css  js  c++  java
  • POJ 3264 Balanced Lineup【线段树区间查询求最大值和最小值】

    Balanced Lineup

    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 53703   Accepted: 25237
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q.
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ ABN), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    Source

    分析:线段树求最大值和最小值,然后最大值减去最小值即为正解!貌似这题好像有暴力写法?
    下面给出AC代码:
     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <string.h>
     4 using namespace std;
     5 #define maxsize 200020
     6 typedef struct
     7 {
     8     int left,right;
     9     int maxn;
    10     int minn;
    11 }Node;
    12 int n,m;
    13 int Max,Min;
    14 int num[maxsize];
    15 Node tree[maxsize*20];
    16 inline void buildtree(int root,int left,int right)// 构建线段树
    17 {
    18     int mid;
    19     tree[root].left=left;
    20     tree[root].right=right;// 当前节点所表示的区间
    21     if(left==right)// 左右区间相同,则此节点为叶子,max 应储存对应某个学生的值
    22     {
    23         tree[root].maxn=num[left];
    24         tree[root].minn=num[left];
    25         return;
    26     }
    27     mid=(left+right)/2;
    28     //int a,b;// 递归建立左右子树,并从子树中获得最大值
    29     buildtree(2*root,left,mid);
    30     buildtree(2*root+1,mid+1,right);
    31     tree[root].maxn=max(tree[root*2].maxn,tree[root*2+1].maxn);
    32     tree[root].minn=min(tree[root*2].minn,tree[root*2+1].minn);
    33 }
    34 inline void find(int root,int left,int right)// 从节点 root 开始,查找 left 和 right 之间的最大值
    35 {
    36     int mid;
    37     //if(tree[root].left>right||tree[root].right<left)// 若此区间与 root 所管理的区间无交集
    38         //return;
    39     if(left==tree[root].left&&tree[root].right==right)// 若此区间包含 root 所管理的区间
    40     {
    41         Max=max(tree[root].maxn,Max);
    42         Min=min(tree[root].minn,Min);
    43         return;
    44     }
    45     mid=(tree[root].left+tree[root].right)/2;
    46     if(right<=mid)
    47         find(root*2,left,right);
    48     else if(left>mid)
    49         find(root*2+1,left,right);
    50     else
    51     {
    52         find(root*2,left,mid);
    53         find(root*2+1,mid+1,right);
    54         //tree[root].maxn=max(tree[root*2].maxn,tree[root*2+1].maxn);
    55         //tree[root].minn=min(tree[root*2].minn,tree[root*2+1].minn);
    56         //return;
    57     }
    58 }
    59 
    60 int main()
    61 {
    62     //char c;
    63     int i;
    64     int x,y;
    65     //scanf("d%d",&n,&m);
    66     while(scanf("%d%d",&n,&m)!=EOF)
    67     {
    68         for(i=1;i<=n;i++)
    69             scanf("%d",&num[i]);
    70         buildtree(1,1,n);
    71         for(i=1;i<=m;i++)
    72         {
    73             //getchar();
    74             Max=-99999999999;
    75             Min= 99999999999;
    76             scanf("%d%d",&x,&y);
    77             //if(c=='Q')
    78                 //printf("%d
    ",find(1,x,y));
    79             //else
    80             //{
    81                // num[x]=y;
    82                // update(1,x,y);
    83             //}
    84             find(1,x,y);
    85             printf("%d
    ",Max-Min);
    86         }
    87     }
    88     return 0;
    89 }
  • 相关阅读:
    单点登录的实现原理
    Entity Framework添加记录时获取自增ID值
    linq to entity查询,日期格式化
    Linq之GroupBy用法
    IIS HTTPS CA
    CallContext和多线程
    windows平台 culture name 详细列表
    如何在WCF中集成unity
    .NET MVC 依赖注入 来龙去脉
    apache虚拟主机安装注意事项
  • 原文地址:https://www.cnblogs.com/ECJTUACM-873284962/p/7133096.html
Copyright © 2011-2022 走看看