zoukankan      html  css  js  c++  java
  • CodeForces 242E二维线段树

                                                                                           E. XOR on Segment

    You've got an array a, consisting of n integers a1, a2, ..., an. You are allowed to perform two operations on this array:

    1. Calculate the sum of current array elements on the segment [l, r], that is, count value al + al + 1 + ... + ar.
    2. Apply the xor operation with a given number x to each array element on the segment [l, r], that is, execute . This operation changes exactly r - l + 1 array elements.

    Expression means applying bitwise xor operation to numbers x and y. The given operation exists in all modern programming languages, for example in language C++ and Java it is marked as "^", in Pascal — as "xor".

    You've got a list of m operations of the indicated type. Your task is to perform all given operations, for each sum query you should print the result you get.

    Input

    The first line contains integer n (1 ≤ n ≤ 105) — the size of the array. The second line contains space-separated integers a1, a2, ..., an (0 ≤ ai ≤ 106) — the original array.

    The third line contains integer m (1 ≤ m ≤ 5·104) — the number of operations with the array. The i-th of the following m lines first contains an integer ti (1 ≤ ti ≤ 2) — the type of the i-th query. If ti = 1, then this is the query of the sum, if ti = 2, then this is the query to change array elements. If the i-th operation is of type 1, then next follow two integers li, ri (1 ≤ li ≤ ri ≤ n). If the i-th operation is of type 2, then next follow three integers li, ri, xi (1 ≤ li ≤ ri ≤ n, 1 ≤ xi ≤ 106). The numbers on the lines are separated by single spaces.

    Output

    For each query of type 1 print in a single line the sum of numbers on the given segment. Print the answers to the queries in the order in which the queries go in the input.

    Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams, or the %I64d specifier.

    Sample test(s)
    Input
    5 
    4 10 3 13 7
    8
    1 2 4
    2 1 3 3
    1 2 4
    1 3 3
    2 2 5 5
    1 1 5
    2 1 2 10
    1 2 3
    Output
    26 
    22
    0
    34
    11
    Input
    6 
    4 7 4 0 7 3
    5
    2 2 3 8
    1 1 5
    2 3 5 1
    2 4 5 6
    1 2 3
    Output
    38 
    28

    一个用二维线段树操作的异或题,建立20棵线段数 tree[i]表示这n个数第i为在二进制下的情况 更新的时候将每个数 每个位更新 并用延迟符号 求和的时候按位加起来。

      1 #include <iostream>
      2 #include <stdio.h>
      3 #include <algorithm>
      4 #include <string.h>
      5 #include <math.h>
      6 #include <vector>
      7 #include <stack>
      8 using namespace std;
      9 #define ll long long int
     10 ll a[400000][20];
     11 ll b[400000];
     12 void build(int l,int r,int t)
     13 {
     14     int i;
     15     if(l==r)
     16     {
     17         int x;
     18         scanf("%d",&x);
     19         i=0;
     20         while(x)
     21         {
     22             a[t][i++]=x%2;
     23             x/=2;
     24         }
     25         return ;
     26     }
     27     int m=(l+r)>>1;
     28     build(l,m,t<<1);
     29     build(m+1,r,t<<1|1);
     30     for(i=0; i<20; i++)
     31         a[t][i]=a[t<<1][i]+a[t<<1|1][i];
     32 }
     33 void fun(int l,int r,int t)
     34 {
     35     int z=b[t];
     36     int m=(l+r)>>1;
     37     b[t<<1]^=b[t];
     38     b[t<<1|1]^=b[t];
     39     int i=0;
     40     while(z)
     41     {
     42         if(z%2){
     43             a[t<<1][i]=m-l+1-a[t<<1][i];
     44             a[t<<1|1][i]=r-m-a[t<<1|1][i];
     45         }
     46         i++;
     47         z/=2;
     48     }
     49     b[t]=0;
     50 }
     51 void update(int l,int r,int t,int x,int y,int z)
     52 {
     53     int i;
     54     if(l>=x&&r<=y)
     55     {
     56         i=0;
     57         b[t]^=z;
     58         while(z)
     59         {
     60             if(z%2)
     61                 a[t][i]=r-l+1-a[t][i];
     62             i++;
     63             z/=2;
     64         }
     65         return ;
     66     }
     67     if(b[t])
     68         fun(l,r,t);
     69     int m=(l+r)>>1;
     70     if(x<=m)update(l,m,t<<1,x,y,z);
     71     if(y>m)update(m+1,r,t<<1|1,x,y,z);
     72     for(i=0; i<20; i++)
     73         a[t][i]=a[t<<1][i]+a[t<<1|1][i];
     74 }
     75 ll query(int l,int r,int t,int x,int y)
     76 {
     77     if(l>=x&&r<=y)
     78     {
     79        ll sum=0;
     80        for(int i=0;i<20;i++)
     81        sum+=a[t][i]*(1<<i);
     82        return sum;
     83     }
     84     if(b[t])
     85     fun(l,r,t);
     86     int m=(l+r)>>1;
     87     ll sum=0;
     88     if(x<=m)sum+=query(l,m,t<<1,x,y);
     89     if(y>m)sum+=query(m+1,r,t<<1|1,x,y);
     90     for(int i=0; i<20; i++)
     91         a[t][i]=a[t<<1][i]+a[t<<1|1][i];
     92     return sum;
     93 }
     94 int main()
     95 {
     96     memset(a,0,sizeof(a));
     97     memset(b,0,sizeof(b));
     98     int n;
     99     cin>>n;
    100     build(1,n,1);
    101     int m;
    102     cin>>m;
    103     int i,s,x,y,z;
    104     for(i=0; i<m; i++)
    105     {
    106         scanf("%d",&s);
    107         if(s==1)
    108         {
    109             scanf("%d%d",&x,&y);
    110             cout<<query(1,n,1,x,y)<<endl;
    111         }
    112         else
    113         {
    114            scanf("%d%d%d",&x,&y,&z);
    115             update(1,n,1,x,y,z);
    116         }
    117     }
    118 }
    View Code
  • 相关阅读:
    java cocurrent并发包
    阻塞队列只有一个线程在同一时刻对其进行或者读或者写
    在并发编程中使用生产者和消费者模式能够解决绝大多数并发问题。该模式通过平衡生产线程和消费线程的工作能力来提高程序的整体处理数据的速度。
    深入理解生产者消费者
    java并发编程阻塞队列
    高并发
    ClassLoader Java中类加载出现在哪个阶段,编译期和运行期? 类加载和类装载是一样的吗
    JAVA设计模式之工厂模式(简单工厂模式+工厂方法模式)
    Java并发编程-Executor框架(转)
    Java主线程等待所有子线程执行完毕再执行解决办法(转)
  • 原文地址:https://www.cnblogs.com/ERKE/p/3256408.html
Copyright © 2011-2022 走看看