zoukankan      html  css  js  c++  java
  • Maximum repetition substring (poj3693 后缀数组求重复次数最多的连续重复子串)

    Maximum repetition substring
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 6328   Accepted: 1912

    Description

    The repetition number of a string is defined as the maximum number R such that the string can be partitioned into R same consecutive substrings. For example, the repetition number of "ababab" is 3 and "ababa" is 1.

    Given a string containing lowercase letters, you are to find a substring of it with maximum repetition number.

    Input

    The input consists of multiple test cases. Each test case contains exactly one line, which
    gives a non-empty string consisting of lowercase letters. The length of the string will not be greater than 100,000.

    The last test case is followed by a line containing a '#'.

    Output

    For each test case, print a line containing the test case number( beginning with 1) followed by the substring of maximum repetition number. If there are multiple substrings of maximum repetition number, print the lexicographically smallest one.

    Sample Input

    ccabababc
    daabbccaa
    #

    Sample Output

    Case 1: ababab
    Case 2: aa

      1 #include <iostream>
      2 #include <stdio.h>
      3 #include <math.h>
      4 #include <vector>
      5 #include <string.h>
      6 using namespace std;
      7 #define N 100005
      8 char a[N];
      9 int c[N],d[N],e[N],sa[N],height[N],n,b[N],m,dp[N][21];
     10 int cmp(int *r,int a,int b,int l)
     11 {
     12     return r[a]==r[b]&&r[a+l]==r[b+l];
     13 }
     14 void da()
     15 {
     16     int i,j,p,*x=c,*y=d,*t;
     17     memset(b,0,sizeof(b));
     18     for(i=0; i<n; i++)b[x[i]=a[i]]++;
     19     for(i=1; i<m; i++)b[i]+=b[i-1];
     20     for(i=n-1; i>=0; i--)sa[--b[x[i]]]=i;
     21     for(j=1,p=1; p<n; j*=2,m=p)
     22     {
     23         for(p=0,i=n-j; i<n; i++)y[p++]=i;
     24         for(i=0; i<n; i++)if(sa[i]>=j)y[p++]=sa[i]-j;
     25         for(i=0; i<n; i++)e[i]=x[y[i]];
     26         for(i=0; i<m; i++)b[i]=0;
     27         for(i=0; i<n; i++)b[e[i]]++;
     28         for(i=1; i<m; i++)b[i]+=b[i-1];
     29         for(i=n-1; i>=0; i--)sa[--b[e[i]]]=y[i];
     30         for(t=x,x=y,y=t,p=1,x[sa[0]]=0,i=1; i<n; i++)
     31             x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
     32     }
     33 }
     34 void callheight()
     35 {
     36     int i,j,k=0;
     37     b[0]=0;
     38     for(i=1; i<n; i++)b[sa[i]]=i;
     39     for(i=0; i<n-1; height[b[i++]]=k)
     40         for(k?k--:0,j=sa[b[i]-1]; a[i+k]==a[j+k]; k++);
     41 }
     42 int fun(int i,int j)
     43 {
     44     i=b[i];
     45     j=b[j];
     46     if(i>j)swap(i,j);
     47     i++;
     48     int k=(int)(log(j-i+1.0)/log (2.0));
     49     return min(dp[i][k],dp[j-(1<<k)+1][k]);
     50 }
     51 void initrmq()
     52 {
     53     int i,j;
     54     memset(dp,0,sizeof(dp));
     55     for(i=0; i<=n; i++)
     56         dp[i][0]=height[i];
     57     for(j=1; (1<<j)<=n; j++)
     58         for(i=0; i+(1<<j)<=n; i++)
     59             dp[i][j]=min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
     60 }
     61 int main()
     62 {
     63     int t=1,i,j,yy;
     64     while(~scanf("%s",a))
     65     {
     66         yy=0;
     67         if(a[0]=='#')break;
     68         n=strlen(a);
     69         n++;
     70         m=130;
     71         da();
     72         callheight();
     73         initrmq();
     74         memset(c,0,sizeof(c));
     75         int max=1;
     76         n--;
     77         for(i=1; i<n/2; i++)
     78         {
     79             for(j=0; j+i<n; j+=i)
     80             {
     81                 int k=fun(j,j+i);
     82                 int kk=k/i+1;
     83                 int tt=i-k%i;
     84                 tt=j-tt;
     85                 if (tt>=0&&k%i!=0)
     86                     if(fun(tt,tt+i)>=k)
     87                         kk++;
     88                 if(max<kk)
     89                 {
     90                     yy=0;
     91                     c[yy++]=i;
     92                     max=kk;
     93                 }
     94                 else if(max==kk)
     95                 {
     96                     c[yy++]=i;
     97                 }
     98             }
     99         }
    100         printf("Case %d: ",t++);
    101         int sta,m;
    102         for(i=1; i<n; i++)
    103         {
    104             for(j=0; j<yy; j++)
    105             {
    106 
    107                 if(fun(sa[i],sa[i]+c[j])>=(max-1)*c[j])
    108                 {
    109                     sta=sa[i];
    110                     m=max*c[j];
    111                     break;
    112                 }
    113             }
    114             if(j<yy)break;
    115         }
    116         for(i=0; i<m; i++)putchar(a[sta+i]);
    117         printf("
    ");
    118     }
    119 }
    View Code
  • 相关阅读:
    bzoj 3876: [Ahoi2014&Jsoi2014]支线剧情【有上下界有源汇最小费用最大流】
    bzoj 2055: 80人环游世界【有上下界有源汇最小费用最大流】
    bzoj 2406: 矩阵【二分+有源汇上下界可行流】
    bzoj 4873: [Shoi2017]寿司餐厅【最大权闭合子图】
    bzoj 2007: [Noi2010]海拔【最小割+dijskstra】
    bzoj 2039: [2009国家集训队]employ人员雇佣【最小割】
    bzoj 3996: [TJOI2015]线性代数【最小割】
    bzoj 3158: 千钧一发【最小割】
    bzoj 2597: [Wc2007]剪刀石头布【最小费用最大流】
    bzoj 5120: [2017国家集训队测试]无限之环【最小费用最大流】
  • 原文地址:https://www.cnblogs.com/ERKE/p/3598368.html
Copyright © 2011-2022 走看看