zoukankan      html  css  js  c++  java
  • The Moving Points hdu4717

    The Moving Points

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 964    Accepted Submission(s): 393


    Problem Description
    There are N points in total. Every point moves in certain direction and certain speed. We want to know at what time that the largest distance between any two points would be minimum. And also, we require you to calculate that minimum distance. We guarantee that no two points will move in exactly same speed and direction.
     
    Input
    The rst line has a number T (T <= 10) , indicating the number of test cases.
    For each test case, first line has a single number N (N <= 300), which is the number of points.
    For next N lines, each come with four integers Xi, Yi, VXi and VYi (-106 <= Xi, Yi <= 106, -102 <= VXi , VYi <= 102), (Xi, Yi) is the position of the ith point, and (VXi , VYi) is its speed with direction. That is to say, after 1 second, this point will move to (Xi + VXi , Yi + VYi).
     
    Output
    For test case X, output "Case #X: " first, then output two numbers, rounded to 0.01, as the answer of time and distance.
     
    Sample Input
    2 2 0 0 1 0 2 0 -1 0 2 0 0 1 0 2 1 -1 0
     
    Sample Output
    Case #1: 1.00 0.00 Case #2: 1.00 1.00
     
     1 #include <iostream>
     2 #include <string.h>
     3 #include <stdio.h>
     4 #include <math.h>
     5 #include <algorithm>
     6 using namespace std;
     7 #define eps 0.000001
     8 typedef struct abcd
     9 {
    10     double x,y,vx,vy;
    11 } point;
    12 point p[400];
    13 int n;
    14 double dis(double tt,int x,int y)
    15 {
    16     double xx=p[x].x+tt*p[x].vx;
    17     double yy=p[x].y+tt*p[x].vy;
    18     double xx1=p[y].x+tt*p[y].vx;
    19     double yy1=p[y].y+tt*p[y].vy;
    20     return sqrt((xx-xx1)*(xx-xx1)+(yy-yy1)*(yy-yy1));
    21 }
    22 double funa(double tt)
    23 {
    24     int i,j;
    25     double maxa=0;
    26     for(i=0;i<n;i++)
    27     {
    28         for(j=i+1;j<n;j++)
    29         {
    30             maxa=max(maxa,dis(tt,i,j));
    31         }
    32     }
    33     //cout<<tt<<endl;
    34     return maxa;
    35 }
    36 double fun()
    37 {
    38     double l=0,r=210000000,m1,m2;
    39     while(r-l>eps)
    40     {
    41         m1=l+(r-l)/3;
    42         m2=r-(r-l)/3;
    43         if(funa(m1)<funa(m2))
    44         {
    45             r=m2;
    46         }
    47         else l=m1;
    48     }
    49    return l;
    50 }
    51 int main()
    52 {
    53     int t,i,j,k;
    54     scanf("%d",&t);
    55     for(i=1; i<=t; i++)
    56     {
    57         scanf("%d",&n);
    58         for(j=0; j<n; j++)
    59         {
    60             scanf("%lf%lf%lf%lf",&p[j].x,&p[j].y,&p[j].vx,&p[j].vy);
    61         }
    62         double yyy=fun();
    63         printf("Case #%d: %.2lf %.2lf
    ",i,yyy,funa(yyy));
    64     }
    65 }
    View Code
  • 相关阅读:
    Maven private reprository 更新
    Spark运行模式:cluster与client
    Spark脚本调用
    Java中hashCode与equal方法详解
    String值传递剖析
    Comparator 与 Comparable
    深入理解Java的接口和抽象类
    HitHub使用
    二叉树的递归与非递归遍历
    P1137 旅行计划
  • 原文地址:https://www.cnblogs.com/ERKE/p/3637096.html
Copyright © 2011-2022 走看看