zoukankan      html  css  js  c++  java
  • The Moving Points hdu4717

    The Moving Points

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 964    Accepted Submission(s): 393


    Problem Description
    There are N points in total. Every point moves in certain direction and certain speed. We want to know at what time that the largest distance between any two points would be minimum. And also, we require you to calculate that minimum distance. We guarantee that no two points will move in exactly same speed and direction.
     
    Input
    The rst line has a number T (T <= 10) , indicating the number of test cases.
    For each test case, first line has a single number N (N <= 300), which is the number of points.
    For next N lines, each come with four integers Xi, Yi, VXi and VYi (-106 <= Xi, Yi <= 106, -102 <= VXi , VYi <= 102), (Xi, Yi) is the position of the ith point, and (VXi , VYi) is its speed with direction. That is to say, after 1 second, this point will move to (Xi + VXi , Yi + VYi).
     
    Output
    For test case X, output "Case #X: " first, then output two numbers, rounded to 0.01, as the answer of time and distance.
     
    Sample Input
    2 2 0 0 1 0 2 0 -1 0 2 0 0 1 0 2 1 -1 0
     
    Sample Output
    Case #1: 1.00 0.00 Case #2: 1.00 1.00
     
     1 #include <iostream>
     2 #include <string.h>
     3 #include <stdio.h>
     4 #include <math.h>
     5 #include <algorithm>
     6 using namespace std;
     7 #define eps 0.000001
     8 typedef struct abcd
     9 {
    10     double x,y,vx,vy;
    11 } point;
    12 point p[400];
    13 int n;
    14 double dis(double tt,int x,int y)
    15 {
    16     double xx=p[x].x+tt*p[x].vx;
    17     double yy=p[x].y+tt*p[x].vy;
    18     double xx1=p[y].x+tt*p[y].vx;
    19     double yy1=p[y].y+tt*p[y].vy;
    20     return sqrt((xx-xx1)*(xx-xx1)+(yy-yy1)*(yy-yy1));
    21 }
    22 double funa(double tt)
    23 {
    24     int i,j;
    25     double maxa=0;
    26     for(i=0;i<n;i++)
    27     {
    28         for(j=i+1;j<n;j++)
    29         {
    30             maxa=max(maxa,dis(tt,i,j));
    31         }
    32     }
    33     //cout<<tt<<endl;
    34     return maxa;
    35 }
    36 double fun()
    37 {
    38     double l=0,r=210000000,m1,m2;
    39     while(r-l>eps)
    40     {
    41         m1=l+(r-l)/3;
    42         m2=r-(r-l)/3;
    43         if(funa(m1)<funa(m2))
    44         {
    45             r=m2;
    46         }
    47         else l=m1;
    48     }
    49    return l;
    50 }
    51 int main()
    52 {
    53     int t,i,j,k;
    54     scanf("%d",&t);
    55     for(i=1; i<=t; i++)
    56     {
    57         scanf("%d",&n);
    58         for(j=0; j<n; j++)
    59         {
    60             scanf("%lf%lf%lf%lf",&p[j].x,&p[j].y,&p[j].vx,&p[j].vy);
    61         }
    62         double yyy=fun();
    63         printf("Case #%d: %.2lf %.2lf
    ",i,yyy,funa(yyy));
    64     }
    65 }
    View Code
  • 相关阅读:
    jQuery 入门 -- 事件 事件绑定与事件委托
    原生js实现视差风格音乐播放器
    jQuery 入门
    一些开放的免费接口【已失效】
    php mysqli操作数据库
    DOM 相关
    面向对象
    对象
    博客园添加鼠标点击特效
    正则表达式
  • 原文地址:https://www.cnblogs.com/ERKE/p/3637096.html
Copyright © 2011-2022 走看看