zoukankan      html  css  js  c++  java
  • Java并发(2):Lock

      在上一篇文章中我们讲到了如何使用关键字synchronized来实现同步访问。本文我们继续来探讨这个问题,从Java 5之后,在java.util.concurrent.locks包下提供了另外一种方式来实现同步访问,那就是Lock。

      也许有朋友会问,既然都可以通过synchronized来实现同步访问了,那么为什么还需要提供Lock?这个问题将在下面进行阐述。本文先从synchronized的缺陷讲起,然后再讲述java.util.concurrent.locks包下常用的有哪些类和接口,最后讨论以下一些关于锁的概念方面的东西。

    一.synchronized的缺陷

      synchronized是java中的一个关键字,也就是说是Java语言内置的特性。那么为什么会出现Lock呢?

      在上面一篇文章中,我们了解到如果一个代码块被synchronized修饰了,当一个线程获取了对应的锁,并执行该代码块时,其他线程便只能一直等待,等待获取锁的线程释放锁,而这里获取锁的线程释放锁只会有两种情况:

      1)获取锁的线程执行完了该代码块,然后线程释放对锁的占有;

      2)线程执行发生异常,此时JVM会让线程自动释放锁。

      那么如果这个获取锁的线程由于要等待IO或者其他原因(比如调用sleep方法)被阻塞了,但是又没有释放锁,其他线程便只能干巴巴地等待,试想一下,这多么影响程序执行效率。

      因此就需要有一种机制可以不让等待的线程一直无期限地等待下去(比如只等待一定的时间或者能够响应中断),通过Lock就可以办到。

      再举个例子:当有多个线程读写文件时,读操作和写操作会发生冲突现象,写操作和写操作会发生冲突现象,但是读操作和读操作不会发生冲突现象。

      但是采用synchronized关键字来实现同步的话,就会导致一个问题:

      如果多个线程都只是进行读操作,所以当一个线程在进行读操作时,其他线程只能等待无法进行读操作。

      因此就需要一种机制来使得多个线程都只是进行读操作时,线程之间不会发生冲突,通过Lock就可以办到。

      另外,通过Lock可以知道线程有没有成功获取到锁。这个是synchronized无法办到的。

      总结一下,也就是说Lock提供了比synchronized更多的功能。但是要注意以下几点:

      1)Lock不是Java语言内置的,synchronized是Java语言的关键字,因此是内置特性。Lock是一个类,通过这个类可以实现同步访问;

      2)Lock和synchronized有一点非常大的不同,采用synchronized不需要用户去手动释放锁,当synchronized方法或者synchronized代码块执行完之后,系统会自动让线程释放对锁的占用;而Lock则必须要用户去手动释放锁,如果没有主动释放锁,就有可能导致出现死锁现象。

    二.java.util.concurrent.locks包下常用的类和接口

    1.Lock

      首先要说明的就是Lock,通过查看Lock的源码可知,Lock是一个接口:

    1 public interface Lock {
    2     void lock();
    3     void lockInterruptibly() throws InterruptedException;
    4     boolean tryLock();
    5     boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
    6     void unlock();
    7     Condition newCondition();
    8 }

      下面来逐个讲述Lock接口中每个方法的使用,lock()、tryLock()、tryLock(long time, TimeUnit unit)和lockInterruptibly()是用来获取锁的。unLock()方法是用来释放锁的。newCondition()这个方法暂且不在此讲述,会在后面的线程协作一文中讲述。

      在Lock中声明了四个方法来获取锁,那么这四个方法有何区别呢?

      首先lock()方法是平常使用得最多的一个方法,就是用来获取锁。如果锁已被其他线程获取,则进行等待。

      由于在前面讲到如果采用Lock,必须主动去释放锁,并且在发生异常时,不会自动释放锁。因此一般来说,使用Lock必须在try{}catch{}块中进行,并且将释放锁的操作放在finally块中进行,以保证锁一定被被释放,防止死锁的发生。通常使用Lock来进行同步的话,是以下面这种形式去使用的:

    1 Lock lock = ...;
    2 lock.lock();
    3 try{
    4     //处理任务
    5 }catch(Exception ex){
    6      
    7 }finally{
    8     lock.unlock();   //释放锁
    9 }

      tryLock()方法是有返回值的,它表示用来尝试获取锁,如果获取成功,则返回true,如果获取失败(即锁已被其他线程获取),则返回false,也就说这个方法无论如何都会立即返回。在拿不到锁时不会一直在那等待。

      tryLock(long time, TimeUnit unit)方法和tryLock()方法是类似的,只不过区别在于这个方法在拿不到锁时会等待一定的时间,在时间期限之内如果还拿不到锁,就返回false。如果如果一开始拿到锁或者在等待期间内拿到了锁,则返回true。

      所以,一般情况下通过tryLock来获取锁时是这样使用的:

     1 Lock lock = ...;
     2 if(lock.tryLock()) {
     3      try{
     4          //处理任务
     5      }catch(Exception ex){
     6          
     7      }finally{
     8          lock.unlock();   //释放锁
     9      } 
    10 }else {
    11     //如果不能获取锁,则直接做其他事情
    12 }

      lockInterruptibly()方法比较特殊,当通过这个方法去获取锁时,如果线程正在等待获取锁,则这个线程能够响应中断,即中断线程的等待状态。也就使说,当两个线程同时通过lock.lockInterruptibly()想获取某个锁时,假若此时线程A获取到了锁,而线程B只有在等待,那么对线程B调用threadB.interrupt()方法能够中断线程B的等待过程。

      由于lockInterruptibly()的声明中抛出了异常,所以lock.lockInterruptibly()必须放在try块中或者在调用lockInterruptibly()的方法外声明抛出InterruptedException。

      因此lockInterruptibly()一般的使用形式如下:

    1 public void method() throws InterruptedException {
    2     lock.lockInterruptibly();
    3     try {  
    4      //.....
    5     }
    6     finally {
    7         lock.unlock();
    8     }  
    9 }

      注意,当一个线程获取了锁之后,是不会被interrupt()方法中断的。因为本身在前面的文章中讲过单独调用interrupt()方法不能中断正在运行过程中的线程,只能中断阻塞过程中的线程。

      因此当通过lockInterruptibly()方法获取某个锁时,如果不能获取到,只有进行等待的情况下,是可以响应中断的。

      而用synchronized修饰的话,当一个线程处于等待某个锁的状态,是无法被中断的,只有一直等待下去。

    2.ReentrantLock类

      ReentrantLock,意思是“可重入锁”。ReentrantLock是唯一实现了Lock接口的类,并且ReentrantLock提供了更多的方法。下面通过一些实例看具体看一下如何使用ReentrantLock。

      例子1,lock()的正确使用方法

     1 public class Test {
     2     private ArrayList<Integer> arrayList = new ArrayList<Integer>();
     3     public static void main(String[] args)  {
     4         final Test test = new Test();
     5          
     6         new Thread(){
     7             public void run() {
     8                 test.insert(Thread.currentThread());
     9             };
    10         }.start();
    11          
    12         new Thread(){
    13             public void run() {
    14                 test.insert(Thread.currentThread());
    15             };
    16         }.start();
    17     }  
    18      
    19     public void insert(Thread thread) {
    20         Lock lock = new ReentrantLock();    //注意这个地方
    21         lock.lock();
    22         try {
    23             System.out.println(thread.getName()+"得到了锁");
    24             for(int i=0;i<5;i++) {
    25                 arrayList.add(i);
    26             }
    27         } catch (Exception e) {
    28             // TODO: handle exception
    29         }finally {
    30             System.out.println(thread.getName()+"释放了锁");
    31             lock.unlock();
    32         }
    33     }
    34 }

    想一下这段代码的输出结果是什么?

    Thread-0得到了锁
    Thread-1得到了锁
    Thread-0释放了锁
    Thread-1释放了锁
    View Code

      也许有人会问,怎么会输出这个结果?第二个线程怎么会在第一个线程释放锁之前得到了锁?原因在于,在insert方法中的lock变量是局部变量,每个线程执行该方法时都会保存一个副本,那么理所当然每个线程执行到lock.lock()处获取的是不同的锁,所以就不会发生冲突。

      知道了原因改起来就比较容易了,只需要将lock声明为类的属性即可。

     1 public class Test {
     2     private ArrayList<Integer> arrayList = new ArrayList<Integer>();
     3     private Lock lock = new ReentrantLock();    //注意这个地方
     4     public static void main(String[] args)  {
     5         final Test test = new Test();
     6          
     7         new Thread(){
     8             public void run() {
     9                 test.insert(Thread.currentThread());
    10             };
    11         }.start();
    12          
    13         new Thread(){
    14             public void run() {
    15                 test.insert(Thread.currentThread());
    16             };
    17         }.start();
    18     }  
    19      
    20     public void insert(Thread thread) {
    21         lock.lock();
    22         try {
    23             System.out.println(thread.getName()+"得到了锁");
    24             for(int i=0;i<5;i++) {
    25                 arrayList.add(i);
    26             }
    27         } catch (Exception e) {
    28             // TODO: handle exception
    29         }finally {
    30             System.out.println(thread.getName()+"释放了锁");
    31             lock.unlock();
    32         }
    33     }
    34 }

      这样就是正确地使用Lock的方法了。

      例子2,tryLock()的使用方法

     1 public class Test {
     2     private ArrayList<Integer> arrayList = new ArrayList<Integer>();
     3     private Lock lock = new ReentrantLock();    //注意这个地方
     4     public static void main(String[] args)  {
     5         final Test test = new Test();
     6          
     7         new Thread(){
     8             public void run() {
     9                 test.insert(Thread.currentThread());
    10             };
    11         }.start();
    12          
    13         new Thread(){
    14             public void run() {
    15                 test.insert(Thread.currentThread());
    16             };
    17         }.start();
    18     }  
    19      
    20     public void insert(Thread thread) {
    21         if(lock.tryLock()) {
    22             try {
    23                 System.out.println(thread.getName()+"得到了锁");
    24                 for(int i=0;i<5;i++) {
    25                     arrayList.add(i);
    26                 }
    27             } catch (Exception e) {
    28                 // TODO: handle exception
    29             }finally {
    30                 System.out.println(thread.getName()+"释放了锁");
    31                 lock.unlock();
    32             }
    33         } else {
    34             System.out.println(thread.getName()+"获取锁失败");
    35         }
    36     }
    37 }

    输出结果:

    Thread-0得到了锁
    Thread-1获取锁失败
    Thread-0释放了锁
    View Code

    例子3,lockInterruptibly()响应中断的使用方法:

     1 public class Test {
     2     private Lock lock = new ReentrantLock();   
     3     public static void main(String[] args)  {
     4         Test test = new Test();
     5         MyThread thread1 = new MyThread(test);
     6         MyThread thread2 = new MyThread(test);
     7         thread1.start();
     8         thread2.start();
     9          
    10         try {
    11             Thread.sleep(2000);
    12         } catch (InterruptedException e) {
    13             e.printStackTrace();
    14         }
    15         thread2.interrupt();
    16     }  
    17      
    18     public void insert(Thread thread) throws InterruptedException{
    19         lock.lockInterruptibly();   //注意,如果需要正确中断等待锁的线程,必须将获取锁放在外面,然后将InterruptedException抛出
    20         try {  
    21             System.out.println(thread.getName()+"得到了锁");
    22             long startTime = System.currentTimeMillis();
    23             for(    ;     ;) {
    24                 if(System.currentTimeMillis() - startTime >= Integer.MAX_VALUE)
    25                     break;
    26                 //插入数据
    27             }
    28         }
    29         finally {
    30             System.out.println(Thread.currentThread().getName()+"执行finally");
    31             lock.unlock();
    32             System.out.println(thread.getName()+"释放了锁");
    33         }  
    34     }
    35 }
    36  
    37 class MyThread extends Thread {
    38     private Test test = null;
    39     public MyThread(Test test) {
    40         this.test = test;
    41     }
    42     @Override
    43     public void run() {
    44          
    45         try {
    46             test.insert(Thread.currentThread());
    47         } catch (InterruptedException e) {
    48             System.out.println(Thread.currentThread().getName()+"被中断");
    49         }
    50     }
    51 }

    运行之后,发现thread2能够被正确中断。

    3.ReadWriteLock

    ReadWriteLock也是一个接口,在它里面只定义了两个方法:

     1 public interface ReadWriteLock {
     2     /**
     3      * Returns the lock used for reading.
     4      *
     5      * @return the lock used for reading.
     6      */
     7     Lock readLock();
     8  
     9     /**
    10      * Returns the lock used for writing.
    11      *
    12      * @return the lock used for writing.
    13      */
    14     Lock writeLock();
    15 }

      一个用来获取读锁,一个用来获取写锁。也就是说将文件的读写操作分开,分成2个锁来分配给线程,从而使得多个线程可以同时进行读操作。下面的ReentrantReadWriteLock实现了ReadWriteLock接口。

    4.ReentrantReadWriteLock

      ReentrantReadWriteLock里面提供了很多丰富的方法,不过最主要的有两个方法:readLock()和writeLock()用来获取读锁和写锁。

      下面通过几个例子来看一下ReentrantReadWriteLock具体用法。

      假如有多个线程要同时进行读操作的话,先看一下synchronized达到的效果:

     1 public class Test {
     2     private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
     3 
     4     public static void main(String[] args)  {
     5         final Test test = new Test();
     6 
     7         new Thread(){
     8             public void run() {
     9                 test.get(Thread.currentThread());
    10             };
    11         }.start();
    12 
    13         new Thread(){
    14             public void run() {
    15                 test.get(Thread.currentThread());
    16             };
    17         }.start();
    18     }   
    19 
    20     public synchronized void get(Thread thread) {
    21         long start = System.currentTimeMillis();
    22         while(System.currentTimeMillis() - start <= 1) {
    23             System.out.println(thread.getName()+"正在进行读操作");
    24         }
    25         System.out.println(thread.getName()+"读操作完毕");
    26     }
    27 }

    这段程序的输出结果会是,直到thread1执行完读操作之后,才会打印thread2执行读操作的信息。

    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0读操作完毕
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1读操作完毕
    View Code

    而改成用读写锁的话:

     1 public class Test {
     2     private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
     3 
     4     public static void main(String[] args)  {
     5         final Test test = new Test();
     6 
     7         new Thread(){
     8             public void run() {
     9                 test.get(Thread.currentThread());
    10             };
    11         }.start();
    12 
    13         new Thread(){
    14             public void run() {
    15                 test.get(Thread.currentThread());
    16             };
    17         }.start();
    18     }   
    19 
    20     public void get(Thread thread) {
    21         rwl.readLock().lock();
    22         try {
    23             long start = System.currentTimeMillis();
    24 
    25             while(System.currentTimeMillis() - start <= 1) {
    26                 System.out.println(thread.getName()+"正在进行读操作");
    27             }
    28             System.out.println(thread.getName()+"读操作完毕");
    29         } finally {
    30             rwl.readLock().unlock();
    31         }
    32     }
    33 }

    此时打印的结果为:

    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-0读操作完毕
    Thread-1读操作完毕
    View Code

      说明thread1和thread2在同时进行读操作。这样就大大提升了读操作的效率。

      不过要注意的是,如果有一个线程已经占用了读锁,则此时其他线程如果要申请写锁,则申请写锁的线程会一直等待释放读锁。

      如果有一个线程已经占用了写锁,则此时其他线程如果申请写锁或者读锁,则申请的线程会一直等待释放写锁。

      关于ReentrantReadWriteLock类中的其他方法可以自行查阅API文档。

    三. Lock和synchronized的比较

      总结来说,Lock和synchronized有以下几点不同:

      1)Lock是一个接口,而synchronized是Java中的关键字,synchronized是内置的语言实现;

      2)synchronized在发生异常时,会自动释放线程占有的锁,因此不会导致死锁现象发生;而Lock在发生异常时,如果没有主动通过unLock()去释放锁,则很可能造成死锁现象,因此使用Lock时需要在finally块中释放锁;

      3)Lock可以让等待锁的线程响应中断,而synchronized却不行,使用synchronized时,等待的线程会一直等待下去,不能够响应中断;

      4)通过Lock可以知道有没有成功获取锁,而synchronized却无法办到。

      5)Lock可以提高多个线程进行读操作的效率。

      在性能上来说,如果竞争资源不激烈,两者的性能是差不多的,而当竞争资源非常激烈时(即有大量线程同时竞争),此时Lock的性能要远远优于synchronized。所以说,在具体使用时要根据适当情况选择。

    四. 锁的相关概念介绍

    1.可重入锁

      如果锁具备可重入性,则称作为可重入锁。像synchronized和ReentrantLock都是可重入锁,可重入性在我看来实际上表明了锁的分配机制:基于线程的分配,而不是基于方法调用的分配。举个简单的例子,当一个线程执行到某个synchronized方法时,比如说method1,而在method1中会调用另外一个synchronized方法method2,此时线程不必重新去申请锁,而是可以直接执行方法method2。

      看下面这段代码就明白了:

    1 class MyClass {
    2     public synchronized void method1() {
    3         method2();
    4     }
    5      
    6     public synchronized void method2() {
    7          
    8     }
    9 }

      上述代码中的两个方法method1和method2都用synchronized修饰了,假如某一时刻,线程A执行到了method1,此时线程A获取了这个对象的锁,而由于method2也是synchronized方法,假如synchronized不具备可重入性,此时线程A需要重新申请锁。但是这就会造成一个问题,因为线程A已经持有了该对象的锁,而又在申请获取该对象的锁,这样就会线程A一直等待永远不会获取到的锁。

      而由于synchronized和Lock都具备可重入性,所以不会发生上述现象。

    2.可中断锁

      可中断锁:顾名思义,就是可以相应中断的锁。

      在Java中,synchronized就不是可中断锁,而Lock是可中断锁。

      如果某一线程A正在执行锁中的代码,另一线程B正在等待获取该锁,可能由于等待时间过长,线程B不想等待了,想先处理其他事情,我们可以让它中断自己或者在别的线程中中断它,这种就是可中断锁。

      在前面演示lockInterruptibly()的用法时已经体现了Lock的可中断性。

    3.公平锁

      公平锁即尽量以请求锁的顺序来获取锁。比如同是有多个线程在等待一个锁,当这个锁被释放时,等待时间最久的线程(最先请求的线程)会获得该所,这种就是公平锁。

      非公平锁即无法保证锁的获取是按照请求锁的顺序进行的。这样就可能导致某个或者一些线程永远获取不到锁。

      在Java中,synchronized就是非公平锁,它无法保证等待的线程获取锁的顺序。

      而对于ReentrantLock和ReentrantReadWriteLock,它默认情况下是非公平锁,但是可以设置为公平锁。

      在ReentrantLock中定义了2个静态内部类,一个是NotFairSync,一个是FairSync,分别用来实现非公平锁和公平锁。

      我们可以在创建ReentrantLock对象时,通过以下方式来设置锁的公平性:

    1 ReentrantLock lock = new ReentrantLock(true);

      如果参数为true表示为公平锁,为fasle为非公平锁。默认情况下,如果使用无参构造器,则是非公平锁。

    4.读写锁

      读写锁将对一个资源(比如文件)的访问分成了2个锁,一个读锁和一个写锁。

      正因为有了读写锁,才使得多个线程之间的读操作不会发生冲突。

      ReadWriteLock就是读写锁,它是一个接口,ReentrantReadWriteLock实现了这个接口。

      可以通过readLock()获取读锁,通过writeLock()获取写锁。

      上面已经演示过了读写锁的使用方法,在此不再赘述。

     
    作者:海子

    本博客中未标明转载的文章归作者海子和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

  • 相关阅读:
    代码中引用res里的颜色、图片
    time.setToNow() 取当前时间,月份有误
    adb报错:The connection to adb is down, and a severe&nbs
    安卓下拉刷新、上拉加载数据显示
    4、安卓数据存储——sqlite
    3、安卓数据存储——缓存、内存管理
    2、安卓数据存储——本地文件
    1、安卓数据存储机制——sharedPreference
    一个异步任务接收两个url下载两个图片
    adb报错:The connection to adb is down, and a severe&nbs
  • 原文地址:https://www.cnblogs.com/Eason-S/p/5724067.html
Copyright © 2011-2022 走看看