zoukankan      html  css  js  c++  java
  • D. Equalize Them All Codeforces Round #550 (Div. 3)

    D. Equalize Them All
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    You are given an array aa consisting of nn integers. You can perform the following operations arbitrary number of times (possibly, zero):

    1. Choose a pair of indices (i,j)(i,j) such that |ij|=1|i−j|=1 (indices ii and jj are adjacent) and set ai:=ai+|aiaj|ai:=ai+|ai−aj|;
    2. Choose a pair of indices (i,j)(i,j) such that |ij|=1|i−j|=1 (indices ii and jj are adjacent) and set ai:=ai|aiaj|ai:=ai−|ai−aj|.

    The value |x||x| means the absolute value of xx. For example, |4|=4|4|=4, |3|=3|−3|=3.

    Your task is to find the minimum number of operations required to obtain the array of equal elements and print the order of operations to do it.

    It is guaranteed that you always can obtain the array of equal elements using such operations.

    Note that after each operation each element of the current array should not exceed 10181018 by absolute value.

    Input

    The first line of the input contains one integer nn (1n21051≤n≤2⋅105) — the number of elements in aa.

    The second line of the input contains nn integers a1,a2,,ana1,a2,…,an (0ai21050≤ai≤2⋅105), where aiai is the ii-th element of aa.

    Output

    In the first line print one integer kk — the minimum number of operations required to obtain the array of equal elements.

    In the next kk lines print operations itself. The pp-th operation should be printed as a triple of integers (tp,ip,jp)(tp,ip,jp), where tptp is either 11 or 22 (11means that you perform the operation of the first type, and 22 means that you perform the operation of the second type), and ipip and jpjp are indices of adjacent elements of the array such that 1ip,jpn1≤ip,jp≤n, |ipjp|=1|ip−jp|=1. See the examples for better understanding.

    Note that after each operation each element of the current array should not exceed 10181018 by absolute value.

    If there are many possible answers, you can print any.

    Examples
    input
    Copy
    5
    2 4 6 6 6
    
    output
    Copy
    2
    1 2 3 
    1 1 2 
    
    input
    Copy
    3
    2 8 10
    
    output
    Copy
    2
    2 2 1 
    2 3 2 
    
    input
    Copy
    4
    1 1 1 1
    
    output
    Copy
    0





    这个题目比较简单,非常简单


    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    #include <iostream>
    #include <vector>
    #include <queue>
    #define inf 0x3f3f3f3f
    using namespace std;
    typedef long long ll;
    const int maxn = 2e5 + 100;
    int a[maxn];
    int vis[maxn];
    struct node
    {
    	int tp, x, y;
    	node(int tp = 0, int x = 0, int y = 0) :tp(tp), x(x), y(y){}
    }exa[maxn];
    int main()
    {
    	int n;
    	cin >> n;
    	int ans = 0, mark = 0,flag=0;
    	memset(vis, 0, sizeof(vis));
    	for (int i = 1; i <= n; i++)
    	{
    		scanf("%d", &a[i]);
    		vis[a[i]]++;
    		if(vis[a[i]]>ans)
    		{
    			ans = vis[a[i]];
    			mark = a[i];
    			flag = i;
    		}
    	}
    	int cnt = 0;
    	for(int i=flag;i>=1;i--)
    	{
    		if (a[i] == mark) continue;
    		if(a[i]>mark)
    		{
    			exa[cnt] = node(2,i, i+1);
    			cnt++;
    		}
    		else
    		{
    			exa[cnt] = node(1, i, i + 1);
    			cnt++;
    		}
    	}
    	for(int i=flag;i<=n;i++)
    	{
    		if (a[i] == mark) continue;
    		if(a[i]>mark)
    		{
    			exa[cnt] = node(2, i, i - 1);
    			cnt++;
    		}
    		else
    		{
    			exa[cnt] = node(1, i, i - 1);
    			cnt++;
    		}
    	}
    	printf("%d
    ", cnt);
    	for(int i=0;i<cnt;i++)
    	{
    		printf("%d %d %d
    ", exa[i].tp, exa[i].x, exa[i].y);
    	}
    	return 0;
    }
    

      












  • 相关阅读:
    快速傅立叶变换
    回文树
    gcc 编译c文件的几个过程
    linux quota---mount
    linux device driver3 读书笔记(一)
    linux驱动开发(十一)linux内核信号量、互斥锁、自旋锁
    linux驱动开发(十)——misc杂散设备
    linux驱动(九)platform驱动模型详解,以及基于platform驱动模型的led驱动
    (转)__ATTRIBUTE__ 你知多少?
    linux驱动(八)驱动设备模型
  • 原文地址:https://www.cnblogs.com/EchoZQN/p/10645757.html
Copyright © 2011-2022 走看看