E. Ehab's REAL Number Theory Problem 数论+图论 求最小环
题目大意:
给你一个n大小的数列,数列里的每一个元素满足以下要求:
- 数据范围是:(1<=a_i<=10^6)
- (a_i) 最多只有7个因数
题目要求在这个数列找到一个最短的子数列,子数列的所有的数相乘是一个完全平方数。
题解:
- 这个题对于 (x^{3}) 应该等价于 (x) ,其实就是可以除去 (a_i)中的所有的平方项,显而易见,这个并不影响答案。
- 因为 (a_i) 最多只有7个因素,由素数唯一分解定理可得每一个元素最多 2 个质因子。
- 所以删去平方项之后,每一个元素就会要么是两个素因子相乘,要么就是一个素因子。
- 此时,我们把每一个素因子当初一个节点,如果一个素数是由哪两个素因子相乘,那就可以连一条边,如果只有一个元素,把1也当作素因子看做一个节点。
- 这样就变成一个图论问题,求无向无权图的最小环。
- 直接暴力每一个点都是起点,因为每一个元素至少有一个素因子是小于1000,所以这个时候我们遍历从1到1000每一个值都是起点,就可以遍历到每一个元素,在这里求最小环即可。
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
const int maxn=1e6+10;
struct node{
int v,nxt;
node(int v=0,int nxt=0):v(v),nxt(nxt){}
}e[maxn];
int head[maxn],cnt,isp[maxn],v[maxn],m,f,ans,a[maxn],num;
void init(){//只需要求1000以内的素数即可
cnt=f=num=0,ans=inf;
memset(head,-1,sizeof(head));
for(int i=2;i<1000;i++){
if(!v[i]){
isp[m++]=i;
v[i]=i;
}
for(int j=0;j<m;j++){
if(v[i]<isp[j]||i*isp[j]>=1000) break;
v[i*isp[j]]=isp[j];
}
}
}
void add(int u,int v){
a[++num]=u,a[++num]=v;//求出所有的素数
e[cnt]=node(v,head[u]);
head[u]=cnt++;
e[cnt]=node(u,head[v]);
head[v]=cnt++;
}
void judge(int x){
int div[5],tot=0;
for(int i=0;i<m;i++){
if(x%isp[i]==0){
while(x%(isp[i]*isp[i])==0) x/=isp[i]*isp[i];
if(x%isp[i]==0) div[++tot]=isp[i],x/=isp[i];
}
}
if(tot==0&&x==1) {f=1;return ;}
if(x>1) div[++tot]=x;
if(tot==1) add(1,div[1]);
else add(div[1],div[2]);
}
int d[maxn];
typedef pair<int,int>pii;
void bfs(int s){
for(int i=1;i<=num;i++) d[a[i]]=inf;//只需要初始化在图中的素数
d[s]=0;queue<pii>que;
que.push(pii(s,0));
while(!que.empty()){
pii u=que.front();que.pop();
for(int i=head[u.first];~i;i=e[i].nxt){
int v=e[i].v;
if(v==u.second) continue;
if(d[v]==inf){
d[v]=d[u.first]+1;
que.push(pii(v,u.first));
}
else ans=min(ans,d[u.first]+d[v]+1);
}
}
}
int main(){
init();int n;
scanf("%d",&n);
for(int i=1,x;i<=n;i++){
scanf("%d",&x);judge(x);
}
sort(a+1,a+1+num);
num=unique(a+1,a+1+num)-a-1;
if(f) {printf("1
");return 0;}
bfs(1);
for(int i=0;i<m;i++) bfs(isp[i]);
if(ans==inf) printf("-1
");
else printf("%d
",ans);
return 0;
}