zoukankan      html  css  js  c++  java
  • I

    I - Union

    这是2019女生赛最难的一个题目,但是现在去写,我觉得没有想象之中的那么难。

    把这个题目分成几个部分来考虑。

    • 假设给你k个数,让你分成三个集合,满足这四个条件,且不需要考虑时间和空间的复杂度。

      那么这个是不是就是一个8维的 (dp)

      dp[i][j][x1][x2][x3][x4][x5][x6] 表示有三个集合i个不同的数,三个集合的数加起来是等于j。
      第一个集合有x1个不同的数,第二个集合有x2个不同的数,第三个集合有x3个不同的数
      第一个和第二个集合并起来有x4个不同的数,第二个和第三个并起来有x5个不同的数
      第一个和第三个集合并起来有x6个不同的数。
      

      这样其实就是让你划分这k个数到三个集合中满足条件的方案数。

      这个朴素的写法是不是还比较简单而且好写。

    • 但是如果开8个维度都是50这么大肯定是会爆空间而且时间也过不去。

    • 仔细分析发现其实这个可以分成四类,第一类就是等于0,第二类等于1,第三类等于2,第四类大于等于3。

    • (dp) 的转移有7种转移方式,而且用刷表法进行转移,则对于一个状态,它转移到的7个状态都互不相同。

    • 所以前三类还是正常转移,对于第四类其实可以一起转移,这是因为大于等于三的每一个状态肯定都要向上转移一次,而且转移到的状态都是一样的,所以这个时候可以同时转移,也只转移了一次,不会出现重复。

    //朴素写法
    int main(){
        init();
        int n,k;
        scanf("%d%d",&n,&k);
        for(int i=1;i<=7;i++) scanf("%d",&a[i]);
         dp[0][0][0][0][0][0][0][0]=1;
        for(int i=0;i<k;i++)
        for(int j=i;j<k;j++)
        for(int a=0;a<k;a++)
        for(int b=0;b<k;b++)
        for(int c=0;c<k;c++)
        for(int d=0;d<k;d++)
        for(int e=0;e<k;e++)
        for(int f=0;f<k;f++){
        	if(j!=a+b+c) continue; 
            ll cur=dp[i][j][a][b][c][d][e][f];
            dp[i+1][j+1][3,a+1][b][c][3,d+1][e][3,f+1]+=cur;
            dp[i+1][j+1][a][b+1][c][d+1][e+1][f]+=cur;
            dp[i+1][j+1][a][b][c+1][d][e+1][f+1]+=cur;
            dp[i+1][j+2][a+1][b+1][c][d+1][e+1][f+1]+=cur;
            dp[i+1][j+2][a][b+1][c+1][d+1][e+1][f+1]+=cur;
            dp[i+1][j+2][a+1][b][c+1][d+1][e+1][f+1]+=cur;
            dp[i+1][j+3][a+1][b+1][c+1][d+1][e+1][f+1]+=cur;
        }
        ll ans=0;
        for(int i=a[7];i<=k;i++)
        for(int x=a[1];x<=k;x++)
        for(int y=a[2];y<=k;y++)
        for(int z=a[3];z<=k;z++)
        for(int b=a[4];b<=k;b++)
        for(int c=a[5];c<=k;c++)
        for(int d=a[6];d<=k;d++){
            if(x+y+z!=k) continue;
            ll cur=dp[i][k][x][y][z][b][c][d];
    //        if(cur) printf("i=%d x=%d y=%d z=%d b=%d c=%d d=%d %lld
    ",i,x,y,z,b,c,d,cur);
            ans=(ans+dp[i][k][x][y][z][b][c][d]*C[n][i]);
        }
        printf("%lld
    ",ans);
    }
    

    优化之后的方法

    #include <bits/stdc++.h>
    using namespace std;
    const int maxn=1e6+10;
    const int mod=1e9+7;
    typedef long long ll;
    ll dp[55][55][4][4][4][4][4][4];
    /*
        dp[i][j][x1][x2][x3][x4][x5][x6] 表示有三个集合i个不同的数,三个集合的数加起来是等于j。
        第一个集合有x1个不同的数,第二个集合有x2个不同的数,第三个集合有x3个不同的数
        第一个和第二个集合并起来有x4个不同的数,第二个和第三个并起来有x5个不同的数
        第一个和第三个集合并起来有x6个不同的数。
        所以对于新增加一个数,那么它可能在 A,B,C,AB,AC,BC,ABC
        dp[i+1][j+1][x1+1][x2][x3][x4+1][x5+1][x6]+=1
    
        现在重新对dp进行定义
        dp[i][j][x1][x2][x3][x4][x5][x6]
        表示有i个不同的数字,三个集合的和是j
    
    */
    ll C[maxn][55];
    ll init(){
        for(int i=0;i<maxn;i++){
            C[i][0]=1;
            for(int j=1;j<=min(i,50);j++){
                C[i][j]=C[i-1][j]+C[i-1][j-1];
            }
        }
    }
    int a[10];
    int main(){
        init();
        int n,k;
        scanf("%d%d",&n,&k);
        for(int i=1;i<=7;i++) scanf("%d",&a[i]);
        dp[0][0][0][0][0][0][0][0]=1;
        for(int i=0;i<k;i++)
        for(int j=i;j<k;j++)
        for(int a=0;a<=3;a++)
        for(int b=0;b<=3;b++)
        for(int c=0;c<=3;c++)
        for(int d=0;d<=3;d++)
        for(int e=0;e<=3;e++)
        for(int f=0;f<=3;f++){
            ll cur=dp[i][j][a][b][c][d][e][f];
            dp[i+1][j+1][min(a+1,3)][b][c][min(d+1,3)][e][min(f+1,3)]+=cur;
            dp[i+1][j+1][a][min(b+1,3)][c][min(d+1,3)][min(3,e+1)][f]+=cur;
            dp[i+1][j+1][a][b][min(3,c+1)][d][min(3,e+1)][min(3,f+1)]+=cur;
            dp[i+1][j+2][min(3,a+1)][min(3,b+1)][c][min(3,d+1)][min(3,e+1)][min(3,f+1)]+=cur;
            dp[i+1][j+2][a][min(3,b+1)][min(3,c+1)][min(3,d+1)][min(3,e+1)][min(3,f+1)]+=cur;
            dp[i+1][j+2][min(3,a+1)][b][min(3,c+1)][min(3,d+1)][min(3,e+1)][min(3,f+1)]+=cur;
            dp[i+1][j+3][min(3,a+1)][min(3,b+1)][min(3,c+1)][min(3,d+1)][min(3,e+1)][min(3,f+1)]+=cur;
        }
        ll ans=0;
        for(int i=a[7];i<=k;i++)
        for(int x=a[1];x<=3;x++)
        for(int y=a[2];y<=3;y++)
        for(int z=a[3];z<=3;z++)
        for(int b=a[4];b<=3;b++)
        for(int c=a[5];c<=3;c++)
        for(int d=a[6];d<=3;d++){
            ans=(ans+dp[i][k][x][y][z][b][c][d]*C[n][i])%mod;
        }
        printf("%lld
    ",ans);
    }
    
  • 相关阅读:
    1065. [Nescafe19] 绿豆蛙的归宿(概率)
    SDOI 2016 Round1 Day2
    SDOI 2016 Round1 Day1
    Codeforces Round #397 by Kaspersky Lab and Barcelona Bootcamp (Div. 1 + Div. 2 combined)
    串 2016Vijos省选集训 day3[AC自动机]
    java连接elastic search 9300
    maven安装,maven命令行使用
    eclipse/IDEA使用maven
    hadoop笔记 基础 归档
    tpot蜜罐平台搭建
  • 原文地址:https://www.cnblogs.com/EchoZQN/p/12572260.html
Copyright © 2011-2022 走看看