zoukankan      html  css  js  c++  java
  • Java8 Stream:2 万字 20 个实例,玩转集合的筛选、归约、分组、聚合

    Java8 Stream:2 万字 20 个实例,玩转集合的筛选、归约、分组、聚合

    转自小哈学Java

     1 Stream概述


    Java 8 是一个非常成功的版本,这个版本新增的 Stream ,配合同版本出现的 Lambda ,给我们操作集合(Collection)提供了极大的便利。

    那么什么是 Stream 

    Stream 将要处理的元素集合看作一种流,在流的过程中,借助Stream API对流中的元素进行操作,比如:筛选、排序、聚合等。

    Stream可以由数组或集合创建,对流的操作分为两种:

    1. 中间操作,每次返回一个新的流,可以有多个。
    2. 终端操作,每个流只能进行一次终端操作,终端操作结束后流无法再次使用。终端操作会产生一个新的集合或值。

    另外,Stream有几个特性:

    1. stream不存储数据,而是按照特定的规则对数据进行计算,一般会输出结果。
    2. stream不会改变数据源,通常情况下会产生一个新的集合或一个值。
    3. stream具有延迟执行特性,只有调用终端操作时,中间操作才会执行。

    2 Stream的创建


    Stream可以通过集合数组创建。

    1、通过 java.util.Collection.stream() 方法用集合创建流

    List<String> list = Arrays.asList("a", "b", "c");
    // 创建一个顺序流
    Stream<String> stream = list.stream();
    // 创建一个并行流
    Stream<String> parallelStream = list.parallelStream();
    12345

    2、使用java.util.Arrays.stream(T[] array)方法用数组创建流

    int[] array={1,3,5,6,8};
    IntStream stream = Arrays.stream(array);
    12

    3、使用Stream的静态方法:of()iterate()generate()

    Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5, 6);
    
    Stream<Integer> stream2 = Stream.iterate(0, (x) -> x + 3).limit(4);
    stream2.forEach(System.out::println); // 0 2 4 6 8 10
    
    Stream<Double> stream3 = Stream.generate(Math::random).limit(3);
    stream3.forEach(System.out::println);
    1234567

    输出结果:

    0 3 6 9 0.6796156909271994 0.1914314208854283 0.8116932592396652

    streamparallelStream的简单区分: stream是顺序流,由主线程按顺序对流执行操作,而parallelStream是并行流,内部以多线程并行执行的方式对流进行操作,但前提是流中的数据处理没有顺序要求。例如筛选集合中的奇数,两者的处理不同之处:

    如果流中的数据量足够大,并行流可以加快处速度。

    除了直接创建并行流,还可以通过parallel()把顺序流转换成并行流:

    Optional<Integer> findFirst = list.stream().parallel().filter(x->x>6).findFirst();
    1

     3 Stream的使用

    在使用stream之前,先理解一个概念:Optional

    Optional类是一个可以为null的容器对象。如果值存在则isPresent()方法会返回true,调用get()方法会返回该对象。更详细说明请见:菜鸟教程Java 8 Optional类

    接下来,大批代码向你袭来!我将用20个案例将Stream的使用整得明明白白,只要跟着敲一遍代码,就能很好地掌握。

    案例使用的员工类

    这是后面案例中使用的员工类:

    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, "male", "New York"));
    personList.add(new Person("Jack", 7000, "male", "Washington"));
    personList.add(new Person("Lily", 7800, "female", "Washington"));
    personList.add(new Person("Anni", 8200, "female", "New York"));
    personList.add(new Person("Owen", 9500, "male", "New York"));
    personList.add(new Person("Alisa", 7900, "female", "New York"));
    
    class Person {
     private String name;  // 姓名
     private int salary; // 薪资
     private int age; // 年龄
     private String sex; //性别
     private String area;  // 地区
    
     // 构造方法
     public Person(String name, int salary, int age,String sex,String area) {
      this.name = name;
      this.salary = salary;
      this.age = age;
      this.sex = sex;
      this.area = area;
     }
     // 省略了get和set,请自行添加
    
    }
    1234567891011121314151617181920212223242526

    3.1 遍历/匹配(foreach/find/match)

    Stream 也是支持类似集合的遍历和匹配元素的,只是Stream中的元素是以Optional类型存在的。Stream的遍历、匹配非常简单。

    // import已省略,请自行添加,后面代码亦是
    
    public class StreamTest {
     public static void main(String[] args) {
            List<Integer> list = Arrays.asList(7, 6, 9, 3, 8, 2, 1);
    
            // 遍历输出符合条件的元素
            list.stream().filter(x -> x > 6).forEach(System.out::println);
            // 匹配第一个
            Optional<Integer> findFirst = list.stream().filter(x -> x > 6).findFirst();
            // 匹配任意(适用于并行流)
            Optional<Integer> findAny = list.parallelStream().filter(x -> x > 6).findAny();
            // 是否包含符合特定条件的元素
            boolean anyMatch = list.stream().anyMatch(x -> x < 6);
            System.out.println("匹配第一个值:" + findFirst.get());
            System.out.println("匹配任意一个值:" + findAny.get());
            System.out.println("是否存在大于6的值:" + anyMatch);
        }
    }
    12345678910111213141516171819

     3.2 筛选(filter)

    筛选,是按照一定的规则校验流中的元素,将符合条件的元素提取到新的流中的操作。

     

    案例一:筛选出Integer集合中大于7的元素,并打印出来

    public class StreamTest {
     public static void main(String[] args) {
      List<Integer> list = Arrays.asList(6, 7, 3, 8, 1, 2, 9);
      Stream<Integer> stream = list.stream();
      stream.filter(x -> x > 7).forEach(System.out::println);
     }
    }
    1234567

    预期结果:

    8 9

    案例二:筛选员工中工资高于8000的人,并形成新的集合。

      形成新集合依赖collect(收集),后文有详细介绍。

    public class StreamTest {
     public static void main(String[] args) {
      List<Person> personList = new ArrayList<Person>();
      personList.add(new Person("Tom", 8900, 23, "male", "New York"));
      personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
      personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
      personList.add(new Person("Anni", 8200, 24, "female", "New York"));
      personList.add(new Person("Owen", 9500, 25, "male", "New York"));
      personList.add(new Person("Alisa", 7900, 26, "female", "New York"));
    
      List<String> fiterList = personList.stream().filter(x -> x.getSalary() > 8000).map(Person::getName)
        .collect(Collectors.toList());
      System.out.print("高于8000的员工姓名:" + fiterList);
     }
    }
    123456789101112131415

    运行结果:

    高于8000的员工姓名:[Tom, Anni, Owen]

    3.3 聚合(max/min/count)

    maxmincount这些字眼你一定不陌生,没错,在mysql中我们常用它们进行数据统计。Java stream中也引入了这些概念和用法,极大地方便了我们对集合、数组的数据统计工作。

     案例一:获取String集合中最长的元素。

    public class StreamTest {
     public static void main(String[] args) {
      List<String> list = Arrays.asList("adnm", "admmt", "pot", "xbangd", "weoujgsd");
    
      Optional<String> max = list.stream().max(Comparator.comparing(String::length));
      System.out.println("最长的字符串:" + max.get());
     }
    }
    12345678

    输出结果:

    最长的字符串:weoujgsd

    案例二:获取Integer集合中的最大值。

    public class StreamTest {
     public static void main(String[] args) {
      List<Integer> list = Arrays.asList(7, 6, 9, 4, 11, 6);
    
      // 自然排序
      Optional<Integer> max = list.stream().max(Integer::compareTo);
      // 自定义排序
      Optional<Integer> max2 = list.stream().max(new Comparator<Integer>() {
       @Override
       public int compare(Integer o1, Integer o2) {
        return o1.compareTo(o2);
       }
      });
      System.out.println("自然排序的最大值:" + max.get());
      System.out.println("自定义排序的最大值:" + max2.get());
     }
    }
    1234567891011121314151617

    输出结果:

    自然排序的最大值:11 自定义排序的最大值:11

    案例三:获取员工工资最高的人。

    public class StreamTest {
     public static void main(String[] args) {
      List<Person> personList = new ArrayList<Person>();
      personList.add(new Person("Tom", 8900, 23, "male", "New York"));
      personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
      personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
      personList.add(new Person("Anni", 8200, 24, "female", "New York"));
      personList.add(new Person("Owen", 9500, 25, "male", "New York"));
      personList.add(new Person("Alisa", 7900, 26, "female", "New York"));
    
      Optional<Person> max = personList.stream().max(Comparator.comparingInt(Person::getSalary));
      System.out.println("员工工资最大值:" + max.get().getSalary());
     }
    }
    1234567891011121314

    输出结果:

    员工工资最大值:9500

    案例四:计算Integer集合中大于6的元素的个数。

    import java.util.Arrays;
    import java.util.List;
    
    public class StreamTest {
     public static void main(String[] args) {
      List<Integer> list = Arrays.asList(7, 6, 4, 8, 2, 11, 9);
    
      long count = list.stream().filter(x -> x > 6).count();
      System.out.println("list中大于6的元素个数:" + count);
     }
    }
    1234567891011

    输出结果:

    list中大于6的元素个数:4

    3.4 映射(map/flatMap)

    映射,可以将一个流的元素按照一定的映射规则映射到另一个流中。分为mapflatMap

    • map:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
    • flatMap:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。

     

    案例一:英文字符串数组的元素全部改为大写。整数数组每个元素+3。

    public class StreamTest {
     public static void main(String[] args) {
      String[] strArr = { "abcd", "bcdd", "defde", "fTr" };
      List<String> strList = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList());
    
      List<Integer> intList = Arrays.asList(1, 3, 5, 7, 9, 11);
      List<Integer> intListNew = intList.stream().map(x -> x + 3).collect(Collectors.toList());
    
      System.out.println("每个元素大写:" + strList);
      System.out.println("每个元素+3:" + intListNew);
     }
    }
    123456789101112

    输出结果:

    每个元素大写:[ABCD, BCDD, DEFDE, FTR] 每个元素+3:[4, 6, 8, 10, 12, 14]

     案例二:将员工的薪资全部增加1000。

    public class StreamTest {
     public static void main(String[] args) {
      List<Person> personList = new ArrayList<Person>();
      personList.add(new Person("Tom", 8900, 23, "male", "New York"));
      personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
      personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
      personList.add(new Person("Anni", 8200, 24, "female", "New York"));
      personList.add(new Person("Owen", 9500, 25, "male", "New York"));
      personList.add(new Person("Alisa", 7900, 26, "female", "New York"));
    
      // 不改变原来员工集合的方式
      List<Person> personListNew = personList.stream().map(person -> {
       Person personNew = new Person(person.getName(), 0, 0, null, null);
       personNew.setSalary(person.getSalary() + 10000);
       return personNew;
      }).collect(Collectors.toList());
      System.out.println("一次改动前:" + personList.get(0).getName() + "-->" + personList.get(0).getSalary());
      System.out.println("一次改动后:" + personListNew.get(0).getName() + "-->" + personListNew.get(0).getSalary());
    
      // 改变原来员工集合的方式
      List<Person> personListNew2 = personList.stream().map(person -> {
       person.setSalary(person.getSalary() + 10000);
       return person;
      }).collect(Collectors.toList());
      System.out.println("二次改动前:" + personList.get(0).getName() + "-->" + personListNew.get(0).getSalary());
      System.out.println("二次改动后:" + personListNew2.get(0).getName() + "-->" + personListNew.get(0).getSalary());
     }
    }
    12345678910111213141516171819202122232425262728

    输出结果:

    一次改动前:Tom–>8900 一次改动后:Tom–>18900 二次改动前:Tom–>18900 二次改动后:Tom–>18900

    案例三:将两个字符数组合并成一个新的字符数组。

    public class StreamTest {
     public static void main(String[] args) {
      List<String> list = Arrays.asList("m,k,l,a", "1,3,5,7");
      List<String> listNew = list.stream().flatMap(s -> {
       // 将每个元素转换成一个stream
       String[] split = s.split(",");
       Stream<String> s2 = Arrays.stream(split);
       return s2;
      }).collect(Collectors.toList());
    
      System.out.println("处理前的集合:" + list);
      System.out.println("处理后的集合:" + listNew);
     }
    }
    1234567891011121314

    输出结果:

    处理前的集合:[m-k-l-a, 1-3-5] 处理后的集合:[m, k, l, a, 1, 3, 5]

    3.5 归约(reduce)

    归约,也称缩减,顾名思义,是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作。

    案例一:求Integer集合的元素之和、乘积和最大值。

    public class StreamTest {
     public static void main(String[] args) {
      List<Integer> list = Arrays.asList(1, 3, 2, 8, 11, 4);
      // 求和方式1
      Optional<Integer> sum = list.stream().reduce((x, y) -> x + y);
      // 求和方式2
      Optional<Integer> sum2 = list.stream().reduce(Integer::sum);
      // 求和方式3
      Integer sum3 = list.stream().reduce(0, Integer::sum);
    
      // 求乘积
      Optional<Integer> product = list.stream().reduce((x, y) -> x * y);
    
      // 求最大值方式1
      Optional<Integer> max = list.stream().reduce((x, y) -> x > y ? x : y);
      // 求最大值写法2
      Integer max2 = list.stream().reduce(1, Integer::max);
    
      System.out.println("list求和:" + sum.get() + "," + sum2.get() + "," + sum3);
      System.out.println("list求积:" + product.get());
      System.out.println("list求和:" + max.get() + "," + max2);
     }
    }
    1234567891011121314151617181920212223

    输出结果:

    list求和:29,29,29 list求积:2112 list求和:11,11

    案例二:求所有员工的工资之和和最高工资。

    public class StreamTest {
     public static void main(String[] args) {
      List<Person> personList = new ArrayList<Person>();
      personList.add(new Person("Tom", 8900, 23, "male", "New York"));
      personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
      personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
      personList.add(new Person("Anni", 8200, 24, "female", "New York"));
      personList.add(new Person("Owen", 9500, 25, "male", "New York"));
      personList.add(new Person("Alisa", 7900, 26, "female", "New York"));
    
      // 求工资之和方式1:
      Optional<Integer> sumSalary = personList.stream().map(Person::getSalary).reduce(Integer::sum);
      // 求工资之和方式2:
      Integer sumSalary2 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(),
        (sum1, sum2) -> sum1 + sum2);
      // 求工资之和方式3:
      Integer sumSalary3 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), Integer::sum);
    
      // 求最高工资方式1:
      Integer maxSalary = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),
        Integer::max);
      // 求最高工资方式2:
      Integer maxSalary2 = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),
        (max1, max2) -> max1 > max2 ? max1 : max2);
    
      System.out.println("工资之和:" + sumSalary.get() + "," + sumSalary2 + "," + sumSalary3);
      System.out.println("最高工资:" + maxSalary + "," + maxSalary2);
     }
    }
    1234567891011121314151617181920212223242526272829

    输出结果:

    工资之和:49300,49300,49300 最高工资:9500,9500

    3.6 收集(collect)

    collect,收集,可以说是内容最繁多、功能最丰富的部分了。从字面上去理解,就是把一个流收集起来,最终可以是收集成一个值也可以收集成一个新的集合。

    collect主要依赖java.util.stream.Collectors类内置的静态方法。

     3.6.1 归集(toList/toSet/toMap)

    因为流不存储数据,那么在流中的数据完成处理后,需要将流中的数据重新归集到新的集合里。toListtoSettoMap比较常用,另外还有toCollectiontoConcurrentMap等复杂一些的用法。

    下面用一个案例演示toListtoSettoMap

    public class StreamTest {
     public static void main(String[] args) {
      List<Integer> list = Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20);
      List<Integer> listNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toList());
      Set<Integer> set = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toSet());
    
      List<Person> personList = new ArrayList<Person>();
      personList.add(new Person("Tom", 8900, 23, "male", "New York"));
      personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
      personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
      personList.add(new Person("Anni", 8200, 24, "female", "New York"));
    
      Map<?, Person> map = personList.stream().filter(p -> p.getSalary() > 8000)
        .collect(Collectors.toMap(Person::getName, p -> p));
      System.out.println("toList:" + listNew);
      System.out.println("toSet:" + set);
      System.out.println("toMap:" + map);
     }
    }
    12345678910111213141516171819

    运行结果:

    toList:[6, 4, 6, 6, 20] toSet:[4, 20, 6] toMap:{Tom=mutest.Person@5fd0d5ae, Anni=mutest.Person@2d98a335}

    3.6.2 统计(count/averaging)

    Collectors提供了一系列用于数据统计的静态方法:

    • 计数:count
    • 平均值:averagingIntaveragingLongaveragingDouble
    • 最值:maxByminBy
    • 求和:summingIntsummingLongsummingDouble
    • 统计以上所有:summarizingIntsummarizingLongsummarizingDouble

    案例:统计员工人数、平均工资、工资总额、最高工资。

    public class StreamTest {
     public static void main(String[] args) {
      List<Person> personList = new ArrayList<Person>();
      personList.add(new Person("Tom", 8900, 23, "male", "New York"));
      personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
      personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    
      // 求总数
      Long count = personList.stream().collect(Collectors.counting());
      // 求平均工资
      Double average = personList.stream().collect(Collectors.averagingDouble(Person::getSalary));
      // 求最高工资
      Optional<Integer> max = personList.stream().map(Person::getSalary).collect(Collectors.maxBy(Integer::compare));
      // 求工资之和
      Integer sum = personList.stream().collect(Collectors.summingInt(Person::getSalary));
      // 一次性统计所有信息
      DoubleSummaryStatistics collect = personList.stream().collect(Collectors.summarizingDouble(Person::getSalary));
    
      System.out.println("员工总数:" + count);
      System.out.println("员工平均工资:" + average);
      System.out.println("员工工资总和:" + sum);
      System.out.println("员工工资所有统计:" + collect);
     }
    }
    123456789101112131415161718192021222324

    运行结果:

    员工总数:3 员工平均工资:7900.0 员工工资总和:23700 员工工资所有统计:DoubleSummaryStatistics{count=3, sum=23700.000000,min=7000.000000, average=7900.000000, max=8900.000000}

    3.6.3 分组(partitioningBy/groupingBy)

    • 分区:将stream按条件分为两个Map,比如员工按薪资是否高于8000分为两部分。
    • 分组:将集合分为多个Map,比如员工按性别分组。有单级分组和多级分组。

    案例:将员工按薪资是否高于8000分为两部分;将员工按性别和地区分组

    public class StreamTest {
     public static void main(String[] args) {
      List<Person> personList = new ArrayList<Person>();
      personList.add(new Person("Tom", 8900, "male", "New York"));
      personList.add(new Person("Jack", 7000, "male", "Washington"));
      personList.add(new Person("Lily", 7800, "female", "Washington"));
      personList.add(new Person("Anni", 8200, "female", "New York"));
      personList.add(new Person("Owen", 9500, "male", "New York"));
      personList.add(new Person("Alisa", 7900, "female", "New York"));
    
      // 将员工按薪资是否高于8000分组
            Map<Boolean, List<Person>> part = personList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000));
            // 将员工按性别分组
            Map<String, List<Person>> group = personList.stream().collect(Collectors.groupingBy(Person::getSex));
            // 将员工先按性别分组,再按地区分组
            Map<String, Map<String, List<Person>>> group2 = personList.stream().collect(Collectors.groupingBy(Person::getSex, Collectors.groupingBy(Person::getArea)));
            System.out.println("员工按薪资是否大于8000分组情况:" + part);
            System.out.println("员工按性别分组情况:" + group);
            System.out.println("员工按性别、地区:" + group2);
     }
    }
    123456789101112131415161718192021

    输出结果:

    员工按薪资是否大于8000分组情况:{false=[mutest.Person@2d98a335, mutest.Person@16b98e56, mutest.Person@7ef20235], true=[mutest.Person@27d6c5e0, mutest.Person@4f3f5b24, mutest.Person@15aeb7ab]}
    员工按性别分组情况:{female=[mutest.Person@16b98e56, mutest.Person@4f3f5b24, mutest.Person@7ef20235], male=[mutest.Person@27d6c5e0, mutest.Person@2d98a335, mutest.Person@15aeb7ab]}
    员工按性别、地区:{female={New York=[mutest.Person@4f3f5b24, mutest.Person@7ef20235], Washington=[mutest.Person@16b98e56]}, male={New York=[mutest.Person@27d6c5e0, mutest.Person@15aeb7ab], Washington=[mutest.Person@2d98a335]}}
    123

    3.6.4 接合(joining)

    joining可以将stream中的元素用特定的连接符(没有的话,则直接连接)连接成一个字符串。

    public class StreamTest {
     public static void main(String[] args) {
      List<Person> personList = new ArrayList<Person>();
      personList.add(new Person("Tom", 8900, 23, "male", "New York"));
      personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
      personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    
      String names = personList.stream().map(p -> p.getName()).collect(Collectors.joining(","));
      System.out.println("所有员工的姓名:" + names);
      List<String> list = Arrays.asList("A", "B", "C");
      String string = list.stream().collect(Collectors.joining("-"));
      System.out.println("拼接后的字符串:" + string);
     }
    }
    1234567891011121314

    运行结果:

    所有员工的姓名:Tom,Jack,Lily 拼接后的字符串:A-B-C

    3.6.5 归约(reducing)

    Collectors类提供的reducing方法,相比于stream本身的reduce方法,增加了对自定义归约的支持。

    public class StreamTest {
     public static void main(String[] args) {
      List<Person> personList = new ArrayList<Person>();
      personList.add(new Person("Tom", 8900, 23, "male", "New York"));
      personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
      personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    
      // 每个员工减去起征点后的薪资之和(这个例子并不严谨,但一时没想到好的例子)
      Integer sum = personList.stream().collect(Collectors.reducing(0, Person::getSalary, (i, j) -> (i + j - 5000)));
      System.out.println("员工扣税薪资总和:" + sum);
    
      // stream的reduce
      Optional<Integer> sum2 = personList.stream().map(Person::getSalary).reduce(Integer::sum);
      System.out.println("员工薪资总和:" + sum2.get());
     }
    }
    12345678910111213141516

    运行结果:

    员工扣税薪资总和:8700 员工薪资总和:23700
  • 相关阅读:
    windows消息定义
    17种正则表达式
    DirectX程序例子
    C#调用WINDOWS API 要点
    提取网页中的超级链接
    基于消息驱动的C#Windows程序
    C#使用事件
    C#启动进程的方法
    C#注册表操作方法
    HighLight.net 2.0 版本源码
  • 原文地址:https://www.cnblogs.com/Edward-Wang/p/14041254.html
Copyright © 2011-2022 走看看