zoukankan      html  css  js  c++  java
  • Leetcode: Longest Common Subsequence

    Given two strings text1 and text2, return the length of their longest common subsequence.
    
    A subsequence of a string is a new string generated from the original string with some characters(can be none) deleted without changing the relative order of the remaining characters. (eg, "ace" is a subsequence of "abcde" while "aec" is not). A common subsequence of two strings is a subsequence that is common to both strings.
    
     
    
    If there is no common subsequence, return 0.
    
     
    
    Example 1:
    
    Input: text1 = "abcde", text2 = "ace" 
    Output: 3  
    Explanation: The longest common subsequence is "ace" and its length is 3.
    Example 2:
    
    Input: text1 = "abc", text2 = "abc"
    Output: 3
    Explanation: The longest common subsequence is "abc" and its length is 3.
    Example 3:
    
    Input: text1 = "abc", text2 = "def"
    Output: 0
    Explanation: There is no such common subsequence, so the result is 0.

    DP with a 2D array

    Time & space: O(m * n)

     1 class Solution {
     2     public int longestCommonSubsequence(String text1, String text2) {
     3         if (text1 == null || text1.length() == 0 || text2 == null || text2.length() == 0)
     4             return 0;
     5         int[][] dp = new int[text1.length() + 1][text2.length() + 1];
     6         for (int i = 1; i <= text1.length(); i ++) {
     7             for (int j = 1; j <= text2.length(); j ++) {
     8                 int val = Math.max(dp[i - 1][j], dp[i][j - 1]);
     9                 if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
    10                     val = Math.max(val, dp[i - 1][j - 1] + 1);
    11                 }
    12                 dp[i][j] = val;
    13             }
    14         }
    15         return dp[text1.length()][text2.length()];
    16     }
    17 }

    (Skim through) memory optimization, referencing: https://leetcode.com/problems/longest-common-subsequence/discuss/351689/Java-Two-DP-codes-of-O(mn)-and-O(min(m-n))-spaces-w-picture-and-analysis

    Obviously, the code in method 1 only needs information of previous row to update current row. So we just use a two-row 2D array to save and update the matching results for chars in s1 and s2.

    Note: use k ^ 1 and k ^= 1 to switch between dp[0] (row 0) and dp[1] (row 1).

     1     public int longestCommonSubsequence(String s1, String s2) {
     2         int m = s1.length(), n = s2.length();
     3         if (m < n)  return longestCommonSubsequence(s2, s1);
     4         int[][] dp = new int[2][n + 1];
     5         for (int i = 0, k = 1; i < m; ++i, k ^= 1)
     6             for (int j = 0; j < n; ++j)
     7                 if (s1.charAt(i) == s2.charAt(j)) dp[k][j + 1] = 1 + dp[k ^ 1][j];
     8                 else dp[k][j + 1] = Math.max(dp[k ^ 1][j + 1], dp[k][j]);
     9         return dp[m % 2][n];
    10     }
  • 相关阅读:
    地图瓦片PNG8格式理解
    python gdal3.0安装记录
    gdal------坐标转换记录
    地图切片(加载)原理资料收集与整理
    cesium学习笔记001
    设计模式学习——观察者模式(c++)
    javascript的数组方法
    git的基本使用
    keep-alive
    防抖函数
  • 原文地址:https://www.cnblogs.com/EdwardLiu/p/11533256.html
Copyright © 2011-2022 走看看