zoukankan      html  css  js  c++  java
  • Leetcode: Best Time to Buy and Sell Stock with Cooldown

    Say you have an array for which the ith element is the price of a given stock on day i.
    
    Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times) with the following restrictions:
    
    You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
    After you sell your stock, you cannot buy stock on next day. (ie, cooldown 1 day)
    Example:
    
    prices = [1, 2, 3, 0, 2]
    maxProfit = 3
    transactions = [buy, sell, cooldown, buy, sell]

    参考了:https://leetcode.com/discuss/71391/easiest-java-solution-with-explanations

    1. Define States

    To represent the decision at index i:

    • buy[i]: Max profit till index i. The series of transaction is ending with a buy.
    • sell[i]: Max profit till index i. The series of transaction is ending with a sell.

    To clarify:

    • Till index i, the buy / sell action must happen and must be the last action. It may not happen at index i. It may happen at i - 1, i - 2, ... 0.
    • In the end n - 1, return sell[n - 1]. Apparently we cannot finally end up with a buy. In that case, we would rather take a rest at n - 1.
    • For special case no transaction at all, classify it as sell[i], so that in the end, we can still return sell[n - 1]. Thanks @alex153 @kennethliaoke @anshu2.

    2. Define Recursion

    • buy[i]: To make a decision whether to buy at i, we either take a rest, by just using the old decision at i - 1, or sell at/before i - 2, then buy at i, We cannot sell at i - 1, then buy at i, because of cooldown.
    • sell[i]: To make a decision whether to sell at i, we either take a rest, by just using the old decision at i - 1, or buy at/before i - 1, then sell at i.

    So we get the following formula:

    buy[i] = Math.max(buy[i - 1], sell[i - 2] - prices[i]);   
    sell[i] = Math.max(sell[i - 1], buy[i - 1] + prices[i]);
    

    3. Optimize to O(1) Space

    DP solution only depending on i - 1 and i - 2 can be optimized using O(1) space.

    • Let b2, b1, b0 represent buy[i - 2], buy[i - 1], buy[i]
    • Let s2, s1, s0 represent sell[i - 2], sell[i - 1], sell[i]

    Then arrays turn into Fibonacci like recursion:

    b0 = Math.max(b1, s2 - prices[i]);
    s0 = Math.max(s1, b1 + prices[i]);
    

    4. Write Code in 5 Minutes

    First we define the initial states at i = 0:

    • We can buy. The max profit at i = 0 ending with a buy is -prices[0].
    • We cannot sell. The max profit at i = 0 ending with a sell is 0.

    1D Array: better to understand:

     1 public class Solution {
     2     public int maxProfit(int[] prices) {
     3         if (prices==null || prices.length<=1) return 0;
     4         int[] buy = new int[prices.length];
     5         int[] sell = new int[prices.length];
     6         buy[0] = -prices[0];
     7         sell[0] = 0;
     8         for (int i=1; i<prices.length; i++) {
     9             buy[i] = Math.max(buy[i-1], -prices[i] + ((i>=2)? sell[i-2] : 0));
    10             sell[i] = Math.max(sell[i-1], buy[i-1] + prices[i]);
    11         }
    12         return sell[prices.length-1];
    13     }
    14 }

    Just few variables:(better)

     1 public class Solution {
     2     public int maxProfit(int[] prices) {
     3         if (prices==null || prices.length<=1) return 0;
     4         int b0 = -prices[0];
     5         int s0 = 0;
     6         int b1 = b0;
     7         int s1 = s0;
     8         int s2 = 0;
     9         for (int i=1; i<prices.length; i++) {
    10             b0 = Math.max(b1, s2-prices[i]);
    11             s0 = Math.max(s1, b1+prices[i]);
    12             s2 = s1;
    13             s1 = s0;
    14             b1 = b0;
    15         }
    16         return s0;
    17     }
    18 }
  • 相关阅读:
    SVN版本控制器的使用说明(详细过程)
    tomcat服务器的搭建
    git以及gitHub的使用说明书
    gulp的简单使用
    SASS的应用
    springmvc常用注解
    js创建对象的方法
    SVG入门
    http状态码全解
    Ajax参数详解
  • 原文地址:https://www.cnblogs.com/EdwardLiu/p/5091405.html
Copyright © 2011-2022 走看看