zoukankan      html  css  js  c++  java
  • Leetcode: Longest Increasing Path in a Matrix

    Given an integer matrix, find the length of the longest increasing path.
    
    From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).
    
    Example 1:
    
    nums = [
      [9,9,4],
      [6,6,8],
      [2,1,1]
    ]
    Return 4
    The longest increasing path is [1, 2, 6, 9].
    
    Example 2:
    
    nums = [
      [3,4,5],
      [3,2,6],
      [2,2,1]
    ]
    Return 4
    The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.

    DFS + DP:

    use a two dimensional matrix dp[i][j] to store the length of the longest increasing path starting at matrix[i][j]

    transferring function is: dp[i][j] = max(dp[i][j], dp[x][y] + 1), where dp[x][y] is its neighbor with matrix[x][y] > matrix[i][j]

    Note:

    1. Use matrix[x][y] > matrix[i][j] so we don't need a visited[m][n] array
    2. The key is to cache the distance because it's highly possible to revisit a cell

    Follow Up: How to get the actual longest increasing path

    我的想法:类似Largest Divisible Subset, 除了一个dp[i][j]记录longest length以外,另外再用一个matrix pre[i][j]记录(i,j)longest increasing path上一跳位置, 并用一个variable记录最后最长的path的起始位置(第19行每次res更新时更新)。最后通过这个起始位置沿着一个一个上一跳位置,可以求出path

     1 public class Solution {
     2     int[][] dp;
     3     int[][] directions = new int[][]{{-1,0},{1,0},{0,-1},{0,1}};
     4     int m;
     5     int n;
     6 
     7     public int longestIncreasingPath(int[][] matrix) {
     8         if (matrix==null || matrix.length==0 || matrix[0].length==0) return 0;
     9         m = matrix.length;
    10         n = matrix[0].length;
    11         dp = new int[m][n];
    12 
    13         int result = 0;
    14 
    15         for (int i=0; i<m; i++) {
    16             for (int j=0; j<n; j++) {
    17                 if (dp[i][j] == 0) 
    18                     dp[i][j] = DFS(i, j, matrix); 
    19                 result = Math.max(result, dp[i][j]);
    20             }
    21         }
    22         return result;
    23     }
    24     
    25     public int DFS(int i, int j, int[][] matrix) {
    26         if (dp[i][j] != 0) return dp[i][j];
    27         dp[i][j] = 1;
    28         for (int[] dir : directions) {
    29             int x = i + dir[0];
    30             int y = j + dir[1];
    31             if (x<0 || y<0 || x>=m || y>=n || matrix[x][y]<=matrix[i][j]) continue;
    32             dp[i][j] = Math.max(dp[i][j], DFS(x, y, matrix)+1);
    33         }
    34         return dp[i][j];
    35     }
    36 }
  • 相关阅读:
    java23种设计模式(五)--组合模式
    elasticsearch删除
    Jedis
    Redis主从复制(含哨兵模式)
    Redis持久化
    Redis基本知识(含数据类型)
    Linux学习(含有常用命令集)
    深入Kafka
    Kafka消费者
    Kafka生产者
  • 原文地址:https://www.cnblogs.com/EdwardLiu/p/5156805.html
Copyright © 2011-2022 走看看