For a Maximum Segment Tree, which each node has an extra value max to store the maximum value in this node's interval. Implement a modify function with three parameter root, index and value to change the node's value with [start, end] = [index, index] to the new given value. Make sure after this change, every node in segment tree still has the max attribute with the correct value. Have you met this question in a real interview? Yes Example For segment tree: [1, 4, max=3] / [1, 2, max=2] [3, 4, max=3] / / [1, 1, max=2], [2, 2, max=1], [3, 3, max=0], [4, 4, max=3] if call modify(root, 2, 4), we can get: [1, 4, max=4] / [1, 2, max=4] [3, 4, max=3] / / [1, 1, max=2], [2, 2, max=4], [3, 3, max=0], [4, 4, max=3] or call modify(root, 4, 0), we can get: [1, 4, max=2] / [1, 2, max=2] [3, 4, max=0] / / [1, 1, max=2], [2, 2, max=1], [3, 3, max=0], [4, 4, max=0] Note We suggest you finish problem Segment Tree Build and Segment Tree Query first. Challenge Do it in O(h) time, h is the height of the segment tree.
1 /** 2 * Definition of SegmentTreeNode: 3 * public class SegmentTreeNode { 4 * public int start, end, max; 5 * public SegmentTreeNode left, right; 6 * public SegmentTreeNode(int start, int end, int max) { 7 * this.start = start; 8 * this.end = end; 9 * this.max = max 10 * this.left = this.right = null; 11 * } 12 * } 13 */ 14 public class Solution { 15 /** 16 *@param root, index, value: The root of segment tree and 17 *@ change the node's value with [index, index] to the new given value 18 *@return: void 19 */ 20 public void modify(SegmentTreeNode root, int index, int value) { 21 // write your code here 22 if (root.start == root.end) { 23 root.max = value; 24 return; 25 } 26 int mid = (root.start + root.end)/2; 27 if (index <= mid) modify(root.left, index, value); 28 else modify(root.right, index, value); 29 root.max = Math.max(root.left.max, root.right.max); 30 } 31 }