zoukankan      html  css  js  c++  java
  • Leetcode: Palindrome Pairs

     1 Given a list of unique words, find all pairs of distinct indices (i, j) in the given list, so that the concatenation of the two words, i.e. words[i] + words[j] is a palindrome.
     2 
     3 Example 1:
     4 Given words = ["bat", "tab", "cat"]
     5 Return [[0, 1], [1, 0]]
     6 The palindromes are ["battab", "tabbat"]
     7 Example 2:
     8 Given words = ["abcd", "dcba", "lls", "s", "sssll"]
     9 Return [[0, 1], [1, 0], [3, 2], [2, 4]]
    10 The palindromes are ["dcbaabcd", "abcddcba", "slls", "llssssll"]

    Naive Solution: Time:  O(n^2*k) with n the total number of words in the "words" array and k the average length of each word: check each combination see if it's palindrome. TLE of course.

    Better Solution: Time: O(n*k^2)

    think of a word A which contains two part, 

    1.   A = XX + B,    XX is palindrome, then "B_reverse + XX + B" will make a palindrome, find if B_reverse exists in the the list

    2.   A = C + XX ,   then "C + XX + C_reverse" will make a palindrome, find if C_reverse exists in the list,

    To ensure quick search, use HashMap 

    Be careful about duplicate search:  [abcd, dcba],

    in first iteration, we look at word abcd, at iteration where sndHalf == "", we add {0,1}

    in second iteration, we look at word dcba, at iteration where fstHaf == "", we also add {0, 1}, duplicates

     1 public class Solution {
     2     public List<List<Integer>> palindromePairs(String[] words) {
     3         List<List<Integer>> res = new ArrayList<List<Integer>>();
     4         if (words==null || words.length==0) return res;
     5         Map<String, Integer> map = new HashMap<>();
     6         for (int i=0; i<words.length; i++) {
     7             map.put(words[i], i);
     8         }
     9         for (int i=0; i<words.length; i++) {
    10             int len = words[i].length();
    11             for (int j=0; j<=words[i].length(); j++) {
    12                 String fstHalf = words[i].substring(0, j);
    13                 String sndHalf = words[i].substring(j);
    14                 
    15                 if (isPalindrome(fstHalf)) {
    16                     String sndHalfRev = new StringBuffer(sndHalf).reverse().toString();
    17                     if (map.containsKey(sndHalfRev) && map.get(sndHalfRev)!=i) { //"aaaa" case
    18                         ArrayList<Integer> item = new ArrayList<Integer>();
    19                         item.add(map.get(sndHalfRev));
    20                         item.add(i);
    21                         res.add(new ArrayList<Integer>(item));
    22                     }
    23                 }
    24                 if (isPalindrome(sndHalf)) {
    25                     String fstHalfRev = new StringBuffer(fstHalf).reverse().toString();
    26                     if (map.containsKey(fstHalfRev) && map.get(fstHalfRev)!=i && sndHalf.length()!=0) {
    27                         ArrayList<Integer> item = new ArrayList<Integer>();
    28                         item.add(i);
    29                         item.add(map.get(fstHalfRev));
    30                         res.add(new ArrayList<Integer>(item));
    31                     }
    32                 }
    33             }
    34         }
    35         return res;
    36     }
    37     
    38     public boolean isPalindrome(String str) {
    39         int r = str.length()-1;
    40         int l = 0;
    41         while (l <= r) {
    42             if(str.charAt(l++) != str.charAt(r--)) return false;
    43         }
    44         return true;
    45     }
    46 }

    另有Trie做法未深究https://discuss.leetcode.com/topic/39585/o-n-k-2-java-solution-with-trie-structure-n-total-number-of-words-k-average-length-of-each-word/2

  • 相关阅读:
    在没有源代码的情况下调试JAR包..
    Flex游戏篇——游戏开发概述
    CSDN、sina博客在Zoundry中登记的API URL 收藏
    标准博客 API .BLOG APIS
    SAXParseException An invalid XML character 问题的解决
    分布式存储方法
    拨号720错误解决记.txt
    xxx
    硬盘分区后的逻辑结构
    paip sms to blog.txt
  • 原文地址:https://www.cnblogs.com/EdwardLiu/p/6092295.html
Copyright © 2011-2022 走看看