zoukankan      html  css  js  c++  java
  • Leetcode: Combination Sum IV && Summary: The Key to Solve DP

    Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.
    
    Example:
    
    nums = [1, 2, 3]
    target = 4
    
    The possible combination ways are:
    (1, 1, 1, 1)
    (1, 1, 2)
    (1, 2, 1)
    (1, 3)
    (2, 1, 1)
    (2, 2)
    (3, 1)
    
    Note that different sequences are counted as different combinations.
    
    Therefore the output is 7.
    Follow up:
    What if negative numbers are allowed in the given array?
    How does it change the problem?
    What limitation we need to add to the question to allow negative numbers?

    DP 解法: the key to solve DP problem is to think about how to create overlap, how to re-solve subproblems(怎么制造复用)

    Bottom up dp:

     1 public class Solution {
     2     public int combinationSum4(int[] nums, int target) {
     3         if (nums==null || nums.length==0) return 0;
     4         Arrays.sort(nums);
     5         int[] dp = new int[target+1];
     6         dp[0] = 1;
     7         for (int i=1; i<=target; i++) {
     8             for (int j=0; j<nums.length && nums[j]<=i; j++) {
     9                 dp[i] += dp[i-nums[j]];
    10             }
    11         }
    12         return dp[target];
    13     }
    14 }

    Better Solution(Bottom-up)不sort也成:

     1 public int combinationSum4(int[] nums, int target) {
     2     int[] comb = new int[target + 1];
     3     comb[0] = 1;
     4     for (int i = 1; i < comb.length; i++) {
     5         for (int j = 0; j < nums.length; j++) {
     6             if (i - nums[j] >= 0) {
     7                 comb[i] += comb[i - nums[j]];
     8             }
     9         }
    10     }
    11     return comb[target];
    12 }

    Follow up:

    I think if there are negative numbers in the array, we must add a requirement that each number is only used one time, or either positive number or negative number should be used only one time, otherwise there would be infinite possible combinations.
    For example, we are given:
    {1, -1}, target = 1,
    it's obvious to see as long as we choose n 1s and (n-1) -1s, it always sums up to 1, n can be any value >= 1.

  • 相关阅读:
    JS基础类型和引用类型
    ul的margin撑不开想要的距离的办法
    html中的列表
    BEM的命名规则
    意义模糊的函数签名……文档注释
    最基础,新手入门第一段代码
    Cookie的使用
    用servlet校验密码2
    用servlet进行用户名和密码校验
    登录页面
  • 原文地址:https://www.cnblogs.com/EdwardLiu/p/6108838.html
Copyright © 2011-2022 走看看