zoukankan      html  css  js  c++  java
  • Leetcode: Minimum Moves to Equal Array Elements II

    Given a non-empty integer array, find the minimum number of moves required to make all array elements equal, where a move is incrementing a selected element by 1 or decrementing a selected element by 1.
    
    You may assume the array's length is at most 10,000.
    
    Example:
    
    Input:
    [1,2,3]
    
    Output:
    2
    
    Explanation:
    Only two moves are needed (remember each move increments or decrements one element):
    
    [1,2,3]  =>  [2,2,3]  =>  [2,2,2]

    Just like meeting point problem, find the median elements in the array after sorting, so

    Solution 1: Sort, find the median: O(NlogN)

     1 public class Solution {
     2     public int minMoves2(int[] nums) {
     3         Arrays.sort(nums);
     4         int i = 0, j = nums.length-1;
     5         int count = 0;
     6         while(i < j){
     7             count += nums[j]-nums[i];
     8             i++;
     9             j--;
    10         }
    11         return count;
    12     }
    13 }
     1 public class Solution {
     2     public int minMoves2(int[] nums) {
     3         Arrays.sort(nums);
     4         int median = nums[nums.length/2];
     5         int res = 0;
     6         for (int num : nums) {
     7             res += Math.max(num-median, median-num);
     8         }
     9         return res;
    10     }
    11 }

    Solution 2: Quick Select

    This solution relies on the fact that if we increment/decrement each element to the median of all the elements, the optimal number of moves is necessary. The median of all elements can be found in expected O(n) time using QuickSelect (or O(n) 

     1 public class Solution {
     2     public int minMoves2(int[] nums) {
     3         int median = findMedian(nums, 0, nums.length-1, nums.length/2+1);
     4         int res = 0;
     5         for (int num : nums) {
     6             res += Math.abs(num-median);
     7         }
     8         return res;
     9     }
    10     
    11     public int findMedian(int[] nums, int l, int r, int k) {
    12         int start = l;
    13         int end = r;
    14         int pivot = r;
    15         while (start < end) {
    16             while (start < end && nums[start] < nums[pivot]) {
    17                 start++;
    18             }
    19             while (start < end && nums[end] >= nums[pivot]) {
    20                 end--;
    21             }
    22             if (start == end) break;
    23             swap(nums, start, end);
    24         }
    25         swap(nums, start, pivot);
    26         if (start+1 == k) return nums[start];
    27         else if (k < start+1) return findMedian(nums, l, start-1, k);
    28         else return findMedian(nums, start+1, r, k);
    29     }
    30     
    31     public void swap(int[] nums, int i, int j) {
    32         int temp = nums[i];
    33         nums[i] = nums[j];
    34         nums[j] = temp;
    35     }
    36 }
  • 相关阅读:
    Python全栈_Day3_网络基础
    Python全栈_Day2_操作系统基础
    Python全栈_Day1_计算机硬件
    NX二次开发-以指定字符分割字符串
    NX二次开发-获取当前项目路径
    NX二次开发-根据文件名删除文件
    NX二次开发-写入信息窗口
    NX二次开发-读文件
    NX二次开发-获取NX里的对象信息
    NX二次开发-菜单
  • 原文地址:https://www.cnblogs.com/EdwardLiu/p/6154704.html
Copyright © 2011-2022 走看看