zoukankan      html  css  js  c++  java
  • Leetcode: Minimum Moves to Equal Array Elements II

    Given a non-empty integer array, find the minimum number of moves required to make all array elements equal, where a move is incrementing a selected element by 1 or decrementing a selected element by 1.
    
    You may assume the array's length is at most 10,000.
    
    Example:
    
    Input:
    [1,2,3]
    
    Output:
    2
    
    Explanation:
    Only two moves are needed (remember each move increments or decrements one element):
    
    [1,2,3]  =>  [2,2,3]  =>  [2,2,2]

    Just like meeting point problem, find the median elements in the array after sorting, so

    Solution 1: Sort, find the median: O(NlogN)

     1 public class Solution {
     2     public int minMoves2(int[] nums) {
     3         Arrays.sort(nums);
     4         int i = 0, j = nums.length-1;
     5         int count = 0;
     6         while(i < j){
     7             count += nums[j]-nums[i];
     8             i++;
     9             j--;
    10         }
    11         return count;
    12     }
    13 }
     1 public class Solution {
     2     public int minMoves2(int[] nums) {
     3         Arrays.sort(nums);
     4         int median = nums[nums.length/2];
     5         int res = 0;
     6         for (int num : nums) {
     7             res += Math.max(num-median, median-num);
     8         }
     9         return res;
    10     }
    11 }

    Solution 2: Quick Select

    This solution relies on the fact that if we increment/decrement each element to the median of all the elements, the optimal number of moves is necessary. The median of all elements can be found in expected O(n) time using QuickSelect (or O(n) 

     1 public class Solution {
     2     public int minMoves2(int[] nums) {
     3         int median = findMedian(nums, 0, nums.length-1, nums.length/2+1);
     4         int res = 0;
     5         for (int num : nums) {
     6             res += Math.abs(num-median);
     7         }
     8         return res;
     9     }
    10     
    11     public int findMedian(int[] nums, int l, int r, int k) {
    12         int start = l;
    13         int end = r;
    14         int pivot = r;
    15         while (start < end) {
    16             while (start < end && nums[start] < nums[pivot]) {
    17                 start++;
    18             }
    19             while (start < end && nums[end] >= nums[pivot]) {
    20                 end--;
    21             }
    22             if (start == end) break;
    23             swap(nums, start, end);
    24         }
    25         swap(nums, start, pivot);
    26         if (start+1 == k) return nums[start];
    27         else if (k < start+1) return findMedian(nums, l, start-1, k);
    28         else return findMedian(nums, start+1, r, k);
    29     }
    30     
    31     public void swap(int[] nums, int i, int j) {
    32         int temp = nums[i];
    33         nums[i] = nums[j];
    34         nums[j] = temp;
    35     }
    36 }
  • 相关阅读:
    dpdk优化相关 转
    常用的TCP Option
    c10k C10M
    Linux惊群效应详解
    bloomfilter 以及count min sketch
    Squid 搭建正向代理服务器
    Openflow的架构+源码剖析 转载
    Hyperscan与Snort的集成方案
    动态图
    psutil 模块
  • 原文地址:https://www.cnblogs.com/EdwardLiu/p/6154704.html
Copyright © 2011-2022 走看看