zoukankan      html  css  js  c++  java
  • Leetcode: Minimum Moves to Equal Array Elements II

    Given a non-empty integer array, find the minimum number of moves required to make all array elements equal, where a move is incrementing a selected element by 1 or decrementing a selected element by 1.
    
    You may assume the array's length is at most 10,000.
    
    Example:
    
    Input:
    [1,2,3]
    
    Output:
    2
    
    Explanation:
    Only two moves are needed (remember each move increments or decrements one element):
    
    [1,2,3]  =>  [2,2,3]  =>  [2,2,2]

    Just like meeting point problem, find the median elements in the array after sorting, so

    Solution 1: Sort, find the median: O(NlogN)

     1 public class Solution {
     2     public int minMoves2(int[] nums) {
     3         Arrays.sort(nums);
     4         int i = 0, j = nums.length-1;
     5         int count = 0;
     6         while(i < j){
     7             count += nums[j]-nums[i];
     8             i++;
     9             j--;
    10         }
    11         return count;
    12     }
    13 }
     1 public class Solution {
     2     public int minMoves2(int[] nums) {
     3         Arrays.sort(nums);
     4         int median = nums[nums.length/2];
     5         int res = 0;
     6         for (int num : nums) {
     7             res += Math.max(num-median, median-num);
     8         }
     9         return res;
    10     }
    11 }

    Solution 2: Quick Select

    This solution relies on the fact that if we increment/decrement each element to the median of all the elements, the optimal number of moves is necessary. The median of all elements can be found in expected O(n) time using QuickSelect (or O(n) 

     1 public class Solution {
     2     public int minMoves2(int[] nums) {
     3         int median = findMedian(nums, 0, nums.length-1, nums.length/2+1);
     4         int res = 0;
     5         for (int num : nums) {
     6             res += Math.abs(num-median);
     7         }
     8         return res;
     9     }
    10     
    11     public int findMedian(int[] nums, int l, int r, int k) {
    12         int start = l;
    13         int end = r;
    14         int pivot = r;
    15         while (start < end) {
    16             while (start < end && nums[start] < nums[pivot]) {
    17                 start++;
    18             }
    19             while (start < end && nums[end] >= nums[pivot]) {
    20                 end--;
    21             }
    22             if (start == end) break;
    23             swap(nums, start, end);
    24         }
    25         swap(nums, start, pivot);
    26         if (start+1 == k) return nums[start];
    27         else if (k < start+1) return findMedian(nums, l, start-1, k);
    28         else return findMedian(nums, start+1, r, k);
    29     }
    30     
    31     public void swap(int[] nums, int i, int j) {
    32         int temp = nums[i];
    33         nums[i] = nums[j];
    34         nums[j] = temp;
    35     }
    36 }
  • 相关阅读:
    python高级(2)—— 基础回顾2
    Java System Reports
    EWA不能及时通过邮件接收
    LA服务可用性4个9是什么意思?怎么达到?
    安装HANA Rules Framework(HRF)
    RFC destination fails with error Incomplete Logon Data after system copy
    为满足中国税改,SAP该如何打SPS
    HANA数据库无法停止
    SR开启时LOG_MODE必须是normal
    2743711
  • 原文地址:https://www.cnblogs.com/EdwardLiu/p/6154704.html
Copyright © 2011-2022 走看看