zoukankan      html  css  js  c++  java
  • FB面经Prepare: Bipartite a graph

    input friends relations{{1,2}, {2,3}, {3,4}}
    把人分成两拨,每拨人互相不认识,
    所以应该是group1{1,3}, group2{2,4}

    这道题应该是how to bipartite a graph

    Taken from GeeksforGeeks

    Following is a simple algorithm to find out whether a given graph is Birpartite or not using Breadth First Search (BFS) :-

    1. Assign RED color to the source vertex (putting into set U).
    2. Color all the neighbors with BLUE color (putting into set V).
    3. Color all neighbor’s neighbor with RED color (putting into set U).
    4. This way, assign color to all vertices such that it satisfies all the constraints of m way coloring problem where m = 2.
    5. While assigning colors, if we find a neighbor which is colored with same color as current vertex, then the graph cannot be colored with 2 vertices (or graph is not Bipartite).

    Also, NOTE :-

    -> It is possible to color a cycle graph with even cycle using two colors.

    -> It is not possible to color a cycle graph with odd cycle using two colors.

    EDIT :-

    If a graph is not connected, it may have more than one bipartition. You need to check all those components separately with the algorithm as mentioned above.

    So, for various disconnected sub-graph of the same graph, you need to perform this bipartition check on all of them separately using the same algorithm discussed above. All of those various disconnected sub-graph of the same graph will account for its own set of bipartition.

    And, the graph will be termed bipartite, IF AND ONLY IF, each of its connected components are proved to be bipartite .

     1 package fbOnsite;
     2 
     3 import java.util.*;
     4 
     5 public class Bipartite {
     6     HashSet<Integer> list1 = new HashSet<Integer>();
     7     HashSet<Integer> list2 = new HashSet<Integer>();
     8     
     9     public void bfs(int[][] relations) {
    10         HashMap<Integer, HashSet<Integer>> graph = new HashMap<Integer, HashSet<Integer>>();
    11         for (int[] each : relations) {
    12             if (!graph.containsKey(each[0]))
    13                 graph.put(each[0], new HashSet<Integer>());
    14             if (!graph.containsKey(each[1]))
    15                 graph.put(each[1], new HashSet<Integer>());
    16             graph.get(each[0]).add(each[1]);
    17             graph.get(each[1]).add(each[0]);
    18         }
    19         
    20         
    21         Queue<Integer> queue = new LinkedList<Integer>();
    22         queue.offer(relations[0][0]);
    23         list1.add(relations[0][0]);
    24         HashSet<Integer> visited = new HashSet<Integer>();
    25         visited.add(relations[0][0]);
    26         int count = 1;
    27         while (!queue.isEmpty()) {
    28             int size = queue.size();
    29             for (int i=0; i<size; i++) {
    30                 int person = queue.poll();
    31                 HashSet<Integer> friends = graph.get(person);
    32                 for (int each : friends) {
    33                     if (list1.contains(each)&&list1.contains(person) || list2.contains(each)&&list2.contains(person)) {
    34                         list1.clear();
    35                         list2.clear();
    36                         return;
    37                     }
    38                         
    39                     if (!visited.contains(each)) {
    40                         if (count%2 == 1) list2.add(each);
    41                         else list1.add(each);
    42                         queue.offer(each);
    43                         visited.add(each);
    44                     }
    45                 }
    46             }
    47             count++;
    48         }
    49     }
    50     
    51     
    52     
    53     /**
    54      * @param args
    55      */
    56     public static void main(String[] args) {
    57         // TODO Auto-generated method stub
    58         Bipartite sol = new Bipartite();
    59         int[][] relations1 = new int[][]{{1,2},{2,3},{3,4}};
    60         int[][] relations2 = new int[][]{{1,2},{1,4},{1,6},{1,8},{2,3},{3,4},{3,6},{2,5},{4,5},{5,6},{5,8}};
    61         int[][] relations3 = new int[][]{{1,2},{2,3},{3,1}};
    62         sol.bfs(relations2);
    63         System.out.println(sol.list1);
    64         System.out.println(sol.list2);
    65     }
    66 
    67 }
  • 相关阅读:
    Windows编程--线程的睡眠方式
    Windows编程-- 等待函数
    Windows编程--线程的切换
    Windows编程-- 用户方式中线程的同步关键代码段(临界区)
    Windows编程--挂起和恢复线程的运行
    Windows编程-- 用户方式中线程的同步原子访问:互锁的函数家族
    Windows编程--线程之GetExitCodeThread()
    Windows编程-- 对Critical Section的封装
    Windows编程--线程的身份标识
    如何在oracle中限制返回结果集的大小
  • 原文地址:https://www.cnblogs.com/EdwardLiu/p/6552027.html
Copyright © 2011-2022 走看看