zoukankan      html  css  js  c++  java
  • 第12篇-Elasticsearch全文查询

    我的Elasticsearch系列文章,逐渐更新中,欢迎关注
    0A.关于Elasticsearch及实例应用
    00.Solr与ElasticSearch对比
    01.ElasticSearch能做什么?
    02.Elastic Stack功能介绍
    03.如何安装与设置Elasticsearch API
    04.如果通过elasticsearch的head插件建立索引_CRUD操作
    05.Elasticsearch多个实例和head plugin使用介绍

    06.当Elasticsearch进行文档索引时,它是怎样工作的?

    07.Elasticsearch中的映射方式—简洁版教程

    08.Elasticsearch中的分析和分析器应用方式

    09. Elasticsearch中构建自定义分析器

    10.Kibana科普-作为Elasticsearhc开发工具
    11.Elasticsearch查询方法

    12.Elasticsearch全文查询

    13.Elasticsearch查询-术语级查询

    14.Python中的Elasticsearch入门

    15.使用Django进行ElasticSearch的简单方法

    16.关于Elasticsearch的6件不太明显的事情
    17.使用Python的初学者Elasticsearch教程
    18.用ElasticSearch索引MongoDB,一个简单的自动完成索引项目
    19.Kibana对Elasticsearch的实用介绍
    20.不和谐如何索引数十亿条消息
    21.使用Django进行ElasticSearch的简单方法

    另外Elasticsearch入门,我强烈推荐ElasticSearch新手搭建手册和这篇优秀的REST API设计指南 给你,这两个指南都是非常想尽的入门手册。

     

    我们已经学习了Elasticsearch查询的基本分类,这两个类别的基本知识以及查询/过滤器上下文。在此博客中,其目的是向您介绍Elasticsearch世界中常见的全文查询。

    让我们索引一些主要由一些文本组成的数据。为简单起见,我采用了Facebook帖子的修剪版本及其说明和详细信息的CSV,这些内容可以在公共网站上获得。您可以将这些tweet索引到Elasticsearch

    我已将上述推文索引到名为fb-post的索引。索引后的样本数据文档如下所示:

    {
    
    "_index" : "fb-post",
    
    "_type" : "_doc",
    
    "_id" : "TszxwG0Bm6hFGbtHjVCC",
    
    "_score" : 1.0,
    
    "_source" : {
    
    "status_type" : "shared_story",
    
    "link" : "http://abcnews.go.com/blogs/headlines/2011/12/chief-justice-roberts-responds-to-judicial-ethics-critics/",
    
    "description" : "PAUL J. RICHARDS/AFP/Getty Images Chief Justice John Roberts issued a ringing endorsement Saturday night of his colleagues’ ability to determine when they should step down from a case because of a conflict of interest. “I have complete confidence in the capability of my colleagues to determine when ...",
    
    "caption" : "abcnews.go.com",
    
    "love_count" : 0,
    
    "shares_count" : 12,
    
    "page_id" : 86680728811,
    
    "wow_count" : 0,
    
    "post_type" : "link",
    
    "id" : "86680728811_272953252761568",
    
    "posted_at" : "2012-01-01 00:30:26",
    
    "sad_count" : 0,
    
    "angry_count" : 0,
    
    "message" : "Roberts took the unusual step of devoting the majority of his annual report to the issue of judicial ethics.",
    
    "picture" : "https://external.xx.fbcdn.net/safe_image.php?d=AQAPXteeHLT2K7Rb&w=130&h=130&url=http%3A%2F%2Fabcnews.go.com%2Fimages%2FPolitics%2Fgty_chief_justice_john_roberts_jt_111231_wblog.jpg&cfs=1&sx=108&sy=0&sw=269&sh=269",
    
    "likes_count" : 61,
    
    "thankful_count" : 0,
    
    "@timestamp" : "2012-01-01T00:30:26.000+05:30",
    
    "comments_count" : 27,
    
    "name" : "Chief Justice Roberts Responds to Judicial Ethics Critics",
    
    "haha_count" : 0
    
    }
    
    }

    在上面的文档中,我们感兴趣的字段是诸如“名称”,“消息”和“描述”之类的文本字段。

    现在让我们一个接一个地转到每个全文查询。

    1.匹配查询

    我们在之前的博客中讨论了匹配查询,但是没有提到匹配查询的正常用例。匹配查询最常见的用例是当我们拥有大量数据集时,我们需要快速找到一些近似精确的匹配项。

    例如,在我们的Twitter数据集中,我们需要确定整个推文集中是否存在“信心”一词。可以使用针对以下“文本”字段的简单匹配查询来完成此操作:

    POST fb-post/_search
    
    {
    
    "query": {
    
    "match": {
    
    "description": {
    
    "query":"confidence"
    
    }
    
    }
    
    }
    
    }

    结果将显示带有“ confidence”文本的推文。

    现在在上面的示例中,我们只看到了一个单词。当我们输入多个单词时会发生什么?让我们尝试下面的查询,这里我们要给出的查询是“ 信心大厦 ”

     

    POST fb-post/_search
    
    {
    
    "query": {
    
    "match": {
    
    "description": {
    
    "query":"confidence buildings"
    
    }
    
    }
    
    }
    
    }

    现在,这将返回匹配“信心” 或 “建筑物”的文档。匹配查询的默认行为为OR。这可以更改。如果我们要同时匹配“信心” 和“建筑物”,则可以在查询中指定“ operator”参数,如下所示:

    POST fb-post/_search
    
    {
    
    "query": {
    
    "match": {
    
    "description": {
    
    "query":"confidence buildings",
    
    "operator":"AND"
    
    }
    
    }
    
    }
    
    }

    上面的查询将返回包含“信心”和“建筑物”(在我们的数据集中为零)的文档

    2.多重比对查询

    顾名思义,多匹配查询将在多个字段中搜索搜索关键字。假设我们有一个搜索关键字“ Giffords family”,可以在“名称”和“描述”字段中进行搜索,则可以使用多重匹配查询。

    POST fb-post/_search
    
    {
    
    "query": {
    
    "multi_match" : {
    
    "query": "Giffords family",
    
    "fields": [ "name", "description" ]
    
    }
    
    }
    
    }

    在此处,针对“名称”和“描述”字段搜索“ Giffords”或“ family”一词,并返回匹配的文档。

    我们还可以针对特定字段进行自定义评分。在下面的查询中,对所有与“名称”字段中的关键字匹配的文档给予5的提升

    POST fb-post/_search
    
    {
    
    "query": {
    
    "multi_match" : {
    
    "query": "Giffords family",
    
    "fields": [ "name^5", "description" ]
    
    }
    
    }
    
    }

     

    3. query_string查询

    另一个有用的查询是query_string查询。它与匹配查询类似,但此处搜索关键字的格式很重要。它需要特定的格式,并且如果搜索关键字的格式不同,则会返回错误。

    考虑以下查询:

    POST fb-post/_search
    
    {
    
    "query": {
    
    "query_string" : {
    
    "query" : "(step down) OR (official act)"
    
    }
    
    }
    
    }

    在此,搜索关键字首先分为两部分,即“或”条件的左侧和“或”条件的右侧。也就是说,搜索查询中的运算符用作定界符。然后将对每个部分进行分析(根据要查询的字段,在上面的示例中查询所有字段,它将进行标准分析),然后进行查询。

    也可以对特定的一个或多个字段进行查询,如下所示:

    POST fb-post/_search
    
    {
    
    "query": {
    
    "query_string" : {
    
    "query" : "(step down) OR (official act)",
    
    "fields" : ["description","name"]
    
    }
    
    }
    
    }

    4. match_phrase查询

    Match_phrase查询是一个特别有用的查询,它寻找匹配短语而不是单个单词。在下面给出的示例中,match_phrase查询以相同顺序获取与单词“ deeply关心”匹配的文档。

    POST fb-post / _search
    
    {
    
    “ query”:{
    
    “ match_phrase”:{
    
    “ description”:“ 密切关注 ”
    
    }
    
    }
    
    }

    即使更改了单词顺序,match_phrase查询的一个非常有用的自定义设置也会匹配。例如,如果我们希望“深切关注”和“深切关注”相匹配,则可以将slop参数与match_phrase查询一起使用,如下所示:

    POST fb-post/_search
    
    {
    
    "query": {
    
    "match_phrase" : {
    
    "description" : "deeply concerned"
    
    }
    
    }
    
    }

    slope值默认为0,最大范围为50。在上面的示例中,slope值2表示可以将这些词视为匹配项的范围。

    现在考虑以下查询,在该查询的末尾加上不完整的关键字“ ab”。该match_phrase查询没有提供火柴,即使存在具有“深切关注文档此查询有关 ” 短语中的“描述”字段

    POST fb-post/_search
    
    {
    
    "query": {
    
    "match_phrase": {
    
    "description" : {
    
    "query" : "deeply concerned",
    
    "slop": 2
    
    }
    
    }
    
    }
    
    }

    5. match_phrase_prefix查询

    在上面的示例中,我们看到match_phrase查询需要精确的短语来进行匹配。但是有时候,如果我们也可以使用match_phrase_prefix查询来匹​​配部分匹配项,那将很方便。“ match_phrase_prefix”查询可帮助我们实现此类匹配。

    POST fb-post/_search
    
    {
    
    "query": {
    
    "match_phrase" : {
    
    "description" : "deeply concerned ab"
    
    }
    
    }
    
    }

    上面的查询可以像下面搭配词组:

    “deeply concerned about”
    
    “deeply concerned above”

    一个实际的用例是邮政编码的自动完成实现,其中用户键入部分短语。

    结论

    在此博客中,我们看到了Elasticsearch查询世界中的一些重要的全文查询。我将在下一个博客中介绍术语级别查询,然后再返回一些特殊的全文查询,这将有助于更好地理解。

  • 相关阅读:
    Erlang千万级用户游戏框架(Openpoker)源码文件分析清单
    HDFS高级开发培训课程之HDFS开发实例课件
    VS2010安装顽疾解决方法:error 25541 failed to open xml file
    程序猿正能量之祖母的坚持
    文件路径
    文件夹操作
    文件夹、文件操作
    C#中AppDomain.CurrentDomain.BaseDirectory与Application.StartupPath的区别
    linq to xml
    C#集合类型
  • 原文地址:https://www.cnblogs.com/Elasticsearchalgolia/p/13080449.html
Copyright © 2011-2022 走看看