zoukankan      html  css  js  c++  java
  • js 计算浮点数

    JS的浮点计算

    就像这样      --------》         0.1 + 0.2 = 0.30000000000000004。

    其实对于浮点数的四则运算,几乎所有的编程语言都会有类似精度误差的问题,只不过在其他语言中已经有封装好的方法来避免精度的问题,而 Js 是一门弱类型的语言,从设计思想上就没有对浮点数有个严格的数据类型,所以精度误差的问题就显得格外突出。下面就分析下为什么会有这个精度误差,以及怎样修复这个误差。

    首先,我们站在计算机的角度去思考问题,0.1 + 0.2 这个看似简单的问题,众所周知,能被计算机读懂的是二进制,而不是我们经常看见的十进制,所以我们先把0.1 + 0.2转换为十进制,

    0.1 => 0.0001 1001 1001 1001…(无限循环)

    0.2 => 0.0011 0011 0011 0011…(无限循环)

    双精度浮点数的小数部分最多支持 52 位,所以两者相加之后得到这么一串 0.0100110011001100110011001100110011001100110011001100 因浮点数小数位的限制而截断的二进制数字,这时候,我们再把它转换为十进制,就成了 0.30000000000000004。

    所以计算机在计算的时候,会先把数值转换为二进制,然后在进行相加,得到的二进制结果,在转化为十进制,这个时候结果就会变成后面多了很多位数的数字;

    这个时候就会得到解决方案:将每个浮点数乘以10的N次方,计算完成后再除以10的N次方;

    在网上找了一个封装的方法来进行转化(如下)

    countFloat(E,S)

    let n = Math.pow(10, S);

    let res = Math.round(E * n) / n;

    return res;

    }

    注释:E是计算表达式,S是需要乘以10的多少次方

    所以     0.1 + 0.2    应该是:

    countFloat(0.1+0.2,2);

    最后的返回值是0.3

  • 相关阅读:
    window2003 安全配置
    VirusScan7.0使用说明
    管理者必读的四个小故事
    iis权限设置
    电信增值业务寻找合作伙伴
    ERP项目管理12要点
    抽闲破个案,放松一下(1)
    网站策划,网站建设的重中之重
    企业及时通讯软件源代码销售,功能类似QQ/UC/贸易通
    软件项目实施规范小结
  • 原文地址:https://www.cnblogs.com/Ella2018/p/9855236.html
Copyright © 2011-2022 走看看