zoukankan      html  css  js  c++  java
  • PPYOLO模型参数配置理解

    内容参考自:README_cn.md · PaddlePaddle/PaddleDetection - 码云 - 开源中国 (gitee.com)

    说明:用于帮助自己理解参数,后续会更新,可能有错误的地方,请不吝赐教。

    # YOLO系列模型参数配置教程

    标签: 模型参数配置

    ++++++++++++++++++++++++++ppyolo_r18vd.yml++++++++++++++++++++++++++++++++architecture: YOLOv3 #模型的名称use_gpu: true #是否使用GPU

    max_iters: 15500     #最大的迭代次数
    log_iter: 10     #输出指定区间的平均结果,如10次的平均结果,也即打印log的间隔
    save_dir: output
    snapshot_iter: 1550
    metric: COCO
    pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_vd_pretrained.tar
    weights: output/ppyolo_r18/model_final
    num_classes: 9
    use_fine_grained_loss: true
    use_ema: true
    ema_decay: 0.9998
    
    YOLOv3:
      backbone: ResNet
      yolo_head: YOLOv3Head
      use_fine_grained_loss: true
    
    ResNet:
      norm_type: sync_bn
      freeze_at: 0
      freeze_norm: false
      norm_decay: 0.
      depth: 18
      feature_maps: [4, 5]
      variant: d
    
    YOLOv3Head:
      anchor_masks: [[3, 4, 5], [0, 1, 2]]
      anchors: [[10, 14], [23, 27], [37, 58],
                [81, 82], [135, 169], [344, 319]]
      norm_decay: 0.
      conv_block_num: 0
      scale_x_y: 1.05
      yolo_loss: YOLOv3Loss
      nms: MatrixNMS
      drop_block: true
    
    YOLOv3Loss:
      ignore_thresh: 0.7
      scale_x_y: 1.05
      label_smooth: false
      use_fine_grained_loss: true
      iou_loss: IouLoss
    
    IouLoss:
      loss_weight: 2.5
      max_height: 640
      max_ 640
    
    MatrixNMS:
        background_label: -1
        keep_top_k: 100
        normalized: false
        score_threshold: 0.01
        post_threshold: 0.01
    
    LearningRate:
      base_lr: 0.004 #学习率决定了权值更新的速度,学习率大,更新的就快,但太快容易越过最优值,而学习率太小又更新的慢,效率低,一般学习率随着训练的进行不断更改,先高一点,然后慢慢降低
      schedulers:
      - !PiecewiseDecay
        gamma: 0.1
        milestones:#学习率变动因子:如迭代到10000次时,学习率衰减十倍,15000次迭代时,学习率又会在前一个学习率的基础上衰减十倍
        - 10000
        - 15000
      - !LinearWarmup
        start_factor: 0. 
        steps: 4000  #学习率变动步长
    
    OptimizerBuilder:
      optimizer:
        momentum: 0.9 #动量,影响梯度下降到最优的速度,一般默认0.9
        type: Momentum
      regularizer:
        factor: 0.0005  #权重衰减正则系数,防止过拟合
        type: L2
    
    _READER_: 'ppyolo_reader.yml'
    TrainReader:
      inputs_def:
        fields: ['image', 'gt_bbox', 'gt_class', 'gt_score']
        num_max_boxes: 50
      dataset:
        !COCODataSet
          image_dir: images
          anno_path: annotations/val.json
          dataset_dir: /home/aistudio/data/data101204/NGdet_v4-concat
          with_background: false
      sample_transforms:
        - !DecodeImage
          to_rgb: True
          with_mixup: True
        - !MixupImage
          alpha: 1.5
          beta: 1.5
        - !ColorDistort {}
        - !RandomExpand
          fill_value: [123.675, 116.28, 103.53]
        - !RandomCrop {}
        - !RandomFlipImage
          is_normalized: false
        - !NormalizeBox {}
        - !PadBox
          num_max_boxes: 50
        - !BboxXYXY2XYWH {}
      batch_transforms:
      - !RandomShape
        sizes: [ 352, 384, 416, 448, 480, 512, 544, 576, 608,640]
    - !NormalizeImage mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] is_scale: True is_channel_first: false - !Permute to_bgr: false channel_first: True # Gt2YoloTarget is only used when use_fine_grained_loss set as true, # this operator will be deleted automatically if use_fine_grained_loss # is set as false - !Gt2YoloTarget anchor_masks: [[3, 4, 5], [0, 1, 2]]
      #anchors是可以事先通过cmd指令计算出来的,是和图片数量,width,height以及cluster(就是下面的num的值,即想要使用的anchors的数量)相关的预选框,可以手工挑选,也可以通过k-means算法从训练样本中学出 anchors: [[10, 14], [23, 27], [37, 58], [81, 82], [135, 169], [344, 319]]
    downsample_ratios: [32, 16] batch_size: 8 shuffle: true mixup_epoch: 100 #大于最大epoch,表示训练过程一直使用mixup数据增广 drop_last: true worker_num: 8 bufsize: 8 use_process: true

    ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    以`ppyolo_r50vd_dcn_1x_coco.yml`为例,这个模型由五个子配置文件组成:

    - 数据配置文件 `coco_detection.yml`

    ```yaml
    # 数据评估类型
    metric: COCO
    # 数据集的类别数
    num_classes: 80

    # TrainDataset
    TrainDataset:
    !COCODataSet
    # 图像数据路径,相对 dataset_dir 路径,os.path.join(dataset_dir, image_dir)
    image_dir: train2017
    # 标注文件路径,相对 dataset_dir 路径,os.path.join(dataset_dir, anno_path)
    anno_path: annotations/instances_train2017.json
    # 数据文件夹
    dataset_dir: dataset/coco
    # data_fields
    data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']

    EvalDataset:
    !COCODataSet
    # 图像数据路径,相对 dataset_dir 路径,os.path.join(dataset_dir, image_dir)
    image_dir: val2017
    # 标注文件路径,相对 dataset_dir 路径,os.path.join(dataset_dir, anno_path)
    anno_path: annotations/instances_val2017.json
    # 数据文件夹,os.path.join(dataset_dir, anno_path)
    dataset_dir: dataset/coco

    TestDataset:
    !ImageFolder
    # 标注文件路径,相对 dataset_dir 路径
    anno_path: annotations/instances_val2017.json
    ```

    - 优化器配置文件 `optimizer_1x.yml`

    ```yaml
    # 总训练轮数
    epoch: 405

    # 学习率设置
    LearningRate:
    # 默认为8卡训学习率
    base_lr: 0.01
    # 学习率调整策略
    schedulers:
    - !PiecewiseDecay
    gamma: 0.1
    # 学习率变化位置(轮数)
    milestones:
    - 243
    - 324
    # Warmup
    - !LinearWarmup
    start_factor: 0.
    steps: 4000

    # 优化器
    OptimizerBuilder:
    # 优化器
    optimizer:
    momentum: 0.9
    type: Momentum
    # 正则化
    regularizer:
    factor: 0.0005
    type: L2
    ```

    - 数据读取配置文件 `ppyolo_reader.yml`

    ```yaml
    # 每张GPU reader进程个数
    worker_num: 2
    # 训练数据
    TrainReader:
    inputs_def:
    num_max_boxes: 50
    # 训练数据transforms
    sample_transforms:
    - Decode: {}
    - Mixup: {alpha: 1.5, beta: 1.5}
    - RandomDistort: {}
    - RandomExpand: {fill_value: [123.675, 116.28, 103.53]}
    - RandomCrop: {}
    - RandomFlip: {}
    # batch_transforms
    batch_transforms:
    - BatchRandomResize: {target_size: [320, 352, 384, 416, 448, 480, 512, 544, 576, 608], random_size: True, random_interp: True, keep_ratio: False}
    - NormalizeBox: {}
    - PadBox: {num_max_boxes: 50}
    - BboxXYXY2XYWH: {}
    - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
    - Permute: {}
    - Gt2YoloTarget: {anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]], anchors: [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]], downsample_ratios: [32, 16, 8]}
    # 训练时batch_size
    batch_size: 24
    # 读取数据是是否乱序
    shuffle: true
    # 是否丢弃最后不能完整组成batch的数据
    drop_last: true
    # mixup_epoch,大于最大epoch,表示训练过程一直使用mixup数据增广
    mixup_epoch: 25000
    # 是否通过共享内存进行数据读取加速,需要保证共享内存大小(如/dev/shm)满足大于1G
    use_shared_memory: true

    # 评估数据
    EvalReader:
    # 评估数据transforms
    sample_transforms:
    - Decode: {}
    - Resize: {target_size: [608, 608], keep_ratio: False, interp: 2}
    - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
    - Permute: {}
    # 评估时batch_size
    batch_size: 8
    # 是否丢弃没有标注的数据
    drop_empty: false

    # 测试数据
    TestReader:
    inputs_def:
    image_shape: [3, 608, 608]
    # 测试数据transforms
    sample_transforms:
    - Decode: {}
    - Resize: {target_size: [608, 608], keep_ratio: False, interp: 2}
    - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
    - Permute: {}
    # 测试时batch_size
    batch_size: 1
    ```

    - 模型配置文件 `ppyolo_r50vd_dcn.yml`

    ```yaml
    # 模型结构类型
    architecture: YOLOv3
    # 预训练模型地址
    pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_pretrained.pdparams
    # norm_type
    norm_type: sync_bn
    # 是否使用ema
    use_ema: true
    # ema_decay
    ema_decay: 0.9998

    # YOLOv3
    YOLOv3:
    # backbone
    backbone: ResNet
    # neck
    neck: PPYOLOFPN
    # yolo_head
    yolo_head: YOLOv3Head
    # post_process
    post_process: BBoxPostProcess


    # backbone
    ResNet:
    # depth
    depth: 50
    # variant
    variant: d
    # return_idx, 0 represent res2
    return_idx: [1, 2, 3]
    # dcn_v2_stages
    dcn_v2_stages: [3]
    # freeze_at
    freeze_at: -1
    # freeze_norm
    freeze_norm: false
    # norm_decay
    norm_decay: 0.

    # PPYOLOFPN
    PPYOLOFPN:
    # 是否coord_conv
    coord_conv: true
    # 是否drop_block
    drop_block: true
    # block_size
    block_size: 3
    # keep_prob
    keep_prob: 0.9
    # 是否spp
    spp: true

    # YOLOv3Head
    YOLOv3Head:
    # anchors
    anchors: [[10, 13], [16, 30], [33, 23],
    [30, 61], [62, 45], [59, 119],
    [116, 90], [156, 198], [373, 326]]
    # anchor_masks
    anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
    # loss
    loss: YOLOv3Loss
    # 是否使用iou_aware
    iou_aware: true
    # iou_aware_factor
    iou_aware_factor: 0.4

    # YOLOv3Loss
    YOLOv3Loss:
    # ignore_thresh
    ignore_thresh: 0.7
    # downsample
    downsample: [32, 16, 8]
    # 是否label_smooth
    label_smooth: false
    # scale_x_y
    scale_x_y: 1.05
    # iou_loss
    iou_loss: IouLoss
    # iou_aware_loss
    iou_aware_loss: IouAwareLoss

    # IouLoss
    IouLoss:
    loss_weight: 2.5
    loss_square: true

    # IouAwareLoss
    IouAwareLoss:
    loss_weight: 1.0

    # BBoxPostProcess
    BBoxPostProcess:
    decode:
    name: YOLOBox
    conf_thresh: 0.01
    downsample_ratio: 32
    clip_bbox: true
    scale_x_y: 1.05
    # nms 配置
    nms:
    name: MatrixNMS
    keep_top_k: 100
    score_threshold: 0.01
    post_threshold: 0.01
    nms_top_k: -1
    background_label: -1

    ```

    - 运行时置文件 `runtime.yml`

    ```yaml
    # 是否使用gpu
    use_gpu: true
    # 日志打印间隔
    log_iter: 20
    # save_dir
    save_dir: output
    # 模型保存间隔时间
    snapshot_epoch: 1
    ```

  • 相关阅读:
    python_07
    python_01
    python_06
    JDBC批处理
    JDBC处理大数据
    利用PreparedStatement预防SQL注入
    利用工厂模式实现serviec层和dao层解耦
    jdbc入门
    EL表达式详解
    购物车案列
  • 原文地址:https://www.cnblogs.com/Elvis123/p/15060489.html
Copyright © 2011-2022 走看看