zoukankan      html  css  js  c++  java
  • Codeforces Educational Codeforces Round 82 --- G. Sum of Prefix Sums

    G. Sum of Prefix Sums(点分治+李超树)

    题意:

    一棵树上每个点有权值,对于树上一条路径u->v,将经过的点依次写下成一个序列(a_1,a_2,...a_r),而(sum_i=sum_{j=1}^i a_j),(f(u,v)=sum_{i=1}^r sum_i),求所有路径中最大的f(u,v)。

    解法:

    考虑所有树上路径,很容易可以想到点分治。但对于每条插入的链,如果作为后半段的话,(f=presum*len+extraval)。对于每条插入的链,我们选择之前哪条链作为前端最大值其实相当于f=k*x+b求x=len时的最大值,而k和b对于不同的前半段都是不同的。这个形式我们可以想到李超树。对于每个新插入的链相当于插入一条线段,对于每个询问线段查找x=len时的最大值即可。

    #include <bits/stdc++.h>
    #define lson rt << 1
    #define rson rt << 1 | 1
    #define ll long long
    using namespace std;
    
    const ll inf = 1e9;
    const int maxn = 150000;
    ll ans = 0;
    
    vector <int> edge[maxn + 11];
    ll a[maxn + 11];
    int dep[maxn + 11],f[maxn + 11],siz[maxn + 11];
    bool vis[maxn + 11] = {false};
    int root,all,minn;
    int n;
    
    struct Line{
    	ll k,b;
    	Line() { k = b = -inf; }
    	Line(ll k,ll b) { this -> k = k; this -> b = b; }
    	ll at(int x) { return k * x + b; }
    };
    
    struct LiChao{
    	Line tree[4 * maxn + 11];
    	int n;
    	void build(int rt,int l,int r) {
    		tree[rt] = Line();
    		if (l == r) return;
    		int mid = (l + r) >> 1;
    		build(lson , l , mid);
    		build(rson , mid + 1 , r);
    	}
    	void clear(int _) { n = _; build(1 , 1 , _); }
    
    	void update(int rt,int l,int r,Line line) {
    		int mid = (l + r) >> 1;
    		if (tree[rt].at(mid) < line.at(mid)) swap(tree[rt] , line);
    		if (l == r) return;
    		if (tree[rt].at(l) < line.at(l)) update(lson , l , mid , line);
    		else update(rson , mid + 1 , r , line);
    	}
    	void modify(int rt,int l,int r,int al,int ar,Line line) {
    		if (l > ar || r < al) return;
    		if (l >= al && r <= ar) {
    			update(rt , l , r , line);
    			return;
    		}
    		int mid = (l + r) >> 1;
    		modify(lson , l , mid , al , ar , line);
    		modify(rson , mid + 1 , r , al , ar , line);
    	}
    	void add(int l,int r,ll k,ll b) { // 在[l,r]插入一条y=kx+b线段 
    		modify(1 , 1 , n , l , r , Line{k , b});
    	}
    
    	ll query(int rt,int l,int r,int x) {
    		if (l == r) return tree[rt].at(x);
    		int mid = (l + r) >> 1;
    		if (mid >= x) return max(tree[rt].at(x) , query(lson , l , mid , x));
    		return max(tree[rt].at(x) , query(rson , mid + 1 , r , x));
    	}
    	ll query(int x) {//查找x处的最大y
    		return query(1 , 1 , n , x);
    	}
    }Lc;
    
    void getroot(int x,int fa) {
    	siz[x] = 1; f[x] = 0;
    	for (auto v : edge[x]) {
    		if (v == fa || vis[v]) continue;
    		getroot(v , x);
    		siz[x] += siz[v];
    		if (siz[v] > f[x]) f[x] = siz[v];
    	}
    	f[x] = max(f[x] , all - siz[x]);
    	if (f[x] < minn) { minn = f[x]; root = x; }
    }
    
    void setdep(int x,int fa) {
    	for (auto v : edge[x]) {
    		if (vis[v] || v == fa) continue;
    		dep[v] = dep[x] + 1;
    		setdep(v , x);
    	}
    }
    
    ll query(int x,int fa,ll sum,ll val) {
    	ll ans = Lc.query(dep[x]) + val;
    	for (auto v : edge[x]) {
    		if (v == fa || vis[v]) continue;
    		ans = max(ans , query(v , x , sum + a[v] , val + sum + a[v]));
    	}
    	return ans;
    }
    
    void add(int x,int fa,ll sum,ll val) {
    	ans = max(ans , val); Lc.add(1 , n , sum , val);
    	for (auto v : edge[x]) {
    		if (vis[v] || v == fa) continue;
    		add(v , x , sum + a[v] , val + a[v] * (dep[v] + 1));
    	}
    }
    
    void divide(int x) {
    	vis[x] = true;
    	if (minn == 0) { ans = max(ans , a[x]); return; }
    	Lc.clear(minn);
    	Lc.add(1 , minn , a[x] , a[x]);
    	for (auto v : edge[x]) {
    		if (vis[v]) continue;
    		ans = max(ans , query(v , x , a[v] , a[v]));
    		add(v , x , a[x] + a[v] , a[x] + a[v] * 2);
    	}
    	
    	reverse(edge[x].begin() , edge[x].end());
    	Lc.clear(minn);
    	Lc.add(1 , minn , a[x] , a[x]);
    	
    	for (auto v : edge[x]) {
    		if (vis[v]) continue;
    		ans = max(ans , query(v , x , a[v] , a[v]));
    		add(v , x , a[x] + a[v] , a[x] + a[v] * 2);
    	}
    
    	for (auto v : edge[x]) {
    		if (vis[v]) continue;
    		all = minn = siz[v]; root = 0;
    		getroot(v , x); dep[root] = 0; setdep(root , x);
    		divide(root);
    	}
    }
    
    int main(){
    	scanf("%d" , &n);
    	for (int i = 1; i < n; i++) {
    		int u,v;
    		scanf("%d %d",&u,&v);
    		edge[u].push_back(v);
    		edge[v].push_back(u);
    	}
    	for (int i = 1; i <= n; i++) scanf("%lld" , &a[i]);
    	all = minn = n; root = 0;
    	getroot(1 , 0); dep[root] = 0; setdep(root , 0);
    	divide(root);
    	printf("%lld
    " , ans);
    } 
    
    
  • 相关阅读:
    check_mysql.sh
    shell 数组长度
    Shell脚本中计算字符串长度的5种方法
    非缓冲文件编程(实时操作)
    ferror,clearerr和EOF含义
    密码库生成
    筛选出多个数据并判断
    扫描有分隔符的数据
    unicode文件处理(如果是ANSI编码就不需要了)
    ferror,perror,cleaner
  • 原文地址:https://www.cnblogs.com/Embiid/p/12360269.html
Copyright © 2011-2022 走看看