题面
题目描述
给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 998244353的结果
输入格式
一个正整数n
输出格式
一个数,表示答案
样例输入
3
样例输出
25
数据范围和约定
对于第i个点 1<=n<=10000*i
增大了数据范围。
题目分析
COGS2353 【HZOI2015】有标号的DAG计数 I升级版。
在这道题的基础上继续往下化:
[egin{split}
f(n)&=sum_{i=1}^nfrac {n!}{(n-i)!cdot i!}cdot(-1)^{i+1}cdot f(n-i)cdot2^{(n-i)cdot i}\
frac{f(n)}{n!}&=sum_{i=1}^nfrac{(-1)^{i+1}}{i!}cdot frac{f(n-i)}{(n-i)!}cdot2^{(n-i)cdot i}
end{split}
]
一个套路
[egin{split}
2^{k(n-k)}&=sqrt{2}^{2kn-2k^2}\
&=sqrt{2}^{-n^2+2kn-k^2-k^2+n^2}\
&=sqrt{2}^{n^2-k^2-(n-k)^2}\
&=frac{sqrt{2}^{n^2}}{sqrt{2}^{k^2}sqrt{2}^{(n-k)^2}}
end{split}
]
所以
[frac{f(n)}{n!sqrt2^{n^2}}=sum_{i=1}^nfrac{(-1)^{i+1}}{i!sqrt2^{i^2}}cdot frac{f(n-i)}{(n-i)!sqrt2^{(n-i)^2}}
]
构造生成函数
[egin{split}
F(x)&=sum_{i=1}frac{f(i)}{i!sqrt 2^{i^2}}x^i\
G(x)&=sum_{i=1}frac{(-1)^{i+1}}{i!sqrt 2^{i^2}}x^i\
end{split}
]
所以
[egin{split}
F&=F*G+1\
F&=frac 1{1-G}
end{split}
]
代码实现
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=400005,mod=998244353,qr2=116195171;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int ksm(int x,int k){
int ret=1;
while(k){
if(k&1)ret=1ll*ret*x%mod;
x=1ll*x*x%mod,k>>=1;
}
return ret;
}
void NTT(int *a,int x,int K){
static int rev[N],lst;
int n=1<<x;
if(n!=lst){
for(int i=0;i<n;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<x-1);
lst=n;
}
for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
for(int i=1;i<n;i<<=1){
int tmp=i<<1,wn=ksm(3,(mod-1)/tmp);
if(K==-1)wn=ksm(wn,mod-2);
for(int j=0;j<n;j+=tmp){
int w=1;
for(int k=0;k<i;k++,w=(LL)w*wn%mod){
int x=a[j+k],y=(LL)w*a[i+j+k]%mod;
a[j+k]=(x+y)%mod;a[i+j+k]=(x-y+mod)%mod;
}
}
}
if(K==-1){
int inv=ksm(n,mod-2);
for(int i=0;i<n;i++)a[i]=(LL)a[i]*inv%mod;
}
}
void Inv(int *f,int *g,int len){
static int A[N];
if(len==1)return g[0]=ksm(f[0],mod-2),void();
Inv(f,g,len>>1),copy(f,f+len,A);
int x=log2(len<<1),n=1<<x;
fill(A+len,A+n,0),fill(g+(len>>1),g+n,0);
NTT(A,x,1),NTT(g,x,1);
for(int i=0;i<n;i++)g[i]=(mod+2-(LL)A[i]*g[i]%mod)*g[i]%mod;
NTT(g,x,-1),fill(g+len,g+n,0);
}
int a[N],b[N],fac[N];
int main(){
freopen("dag_count.in","r",stdin);
freopen("dag_count.out","w",stdout);
int n=Getint(),x=ceil(log2(n+1));
fac[0]=1;
for(int i=1;i<(1<<x);i++)fac[i]=(LL)fac[i-1]*i%mod;
a[0]=1;
for(int i=1;i<(1<<x);i++)
a[i]=(((i&1)?-1:1)*(LL)ksm(fac[i],mod-2)%mod*ksm(ksm(qr2,(LL)i*i%(mod-1)),mod-2)%mod+mod)%mod;
Inv(a,b,1<<x);
cout<<(LL)b[n]*fac[n]%mod*ksm(qr2,(LL)n*n%(mod-1))%mod;
return 0;
}