zoukankan      html  css  js  c++  java
  • HDU 4010 Query on The Trees

    Problem Description
    We have met so many problems on the tree, so today we will have a query problem on a set of trees. 
    There are N nodes, each node will have a unique weight Wi. We will have four kinds of operations on it and you should solve them efficiently. Wish you have fun! 

     
    Input
    There are multiple test cases in our dataset. 
    For each case, the first line contains only one integer N.(1 ≤ N ≤ 300000) The next N‐1 lines each contains two integers x, y which means there is an edge between them. It also means we will give you one tree initially. 
    The next line will contains N integers which means the weight Wi of each node. (0 ≤ Wi ≤ 3000) 
    The next line will contains an integer Q. (1 ≤ Q ≤ 300000) The next Q lines will start with an integer 1, 2, 3 or 4 means the kind of this operation. 
    1. Given two integer x, y, you should make a new edge between these two node x and y. So after this operation, two trees will be connected to a new one. 
    2. Given two integer x, y, you should find the tree in the tree set who contain node x, and you should make the node x be the root of this tree, and then you should cut the edge between node y and its parent. So after this operation, a tree will be separate into two parts. 
    3. Given three integer w, x, y, for the x, y and all nodes between the path from x to y, you should increase their weight by w. 
    4. Given two integer x, y, you should check the node weights on the path between x and y, and you should output the maximum weight on it. 
     
    Output
    For each query you should output the correct answer of it. If you find this query is an illegal operation, you should output ‐1. 
    You should output a blank line after each test case.
     
    Sample Input
    5 1 2 2 4 2 5 1 3 1 2 3 4 5 6 4 2 3 2 1 2 4 2 3 1 3 5 3 2 1 4 4 1 4
     
    Sample Output
    3 -1 7
     
    LCT模板
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #define MN 300001
    using namespace std;
    
    int p,ca,f;
    inline int read(){
        p=0;ca=getchar();f=1;
        while(ca<'0'||ca>'9') {if (ca=='-') f=-1;ca=getchar();}
        while(ca>='0'&&ca<='9') p=p*10+ca-48,ca=getchar();
        return p*f;
    }
    struct na{
        int y,ne;
    }b[MN*2];
    int fa[MN],n,m,x,y,ch[MN][2],top,st[MN],key[MN],ma[MN],c[MN],l[MN],r[MN],num;
    bool rev[MN];
    inline int max(int a,int b){return a>b?a:b;}
    inline bool isroot(int x){
        return ch[fa[x]][0]!=x&&ch[fa[x]][1]!=x;
    }
    inline void pu(int x,int w){
        if (!x) return;
        c[x]+=w;key[x]+=w;ma[x]+=w;
    }
    inline void pd(int x){
        if (c[x]){
            pu(ch[x][0],c[x]);pu(ch[x][1],c[x]);
            c[x]=0;
        }
        if (rev[x]){
            rev[x]=0;rev[ch[x][0]]^=1;rev[ch[x][1]]^=1;
            swap(ch[x][0],ch[x][1]);
        }
    }
    inline void up(int x){
        pd(x);pd(ch[x][0]);pd(ch[x][1]);
        ma[x]=max(max(ma[ch[x][0]],ma[ch[x][1]]),key[x]);
    }
    inline void rot(int x){
        int y=fa[x],kind=ch[y][1]==x;
        if(!isroot(y)) ch[fa[y]][ch[fa[y]][1]==y]=x;
        fa[x]=fa[y];
        fa[y]=x;
        ch[y][kind]=ch[x][!kind];
        fa[ch[y][kind]]=y;
        ch[x][!kind]=y;
        up(y);up(x);
    }
    inline void splay(int x){
        register int i;top=1;st[1]=x;
        for (i=x;!isroot(i);i=fa[i]) st[++top]=fa[i];
        for (i=top;i;i--) up(st[i]);
        while(!isroot(x)){
            if (isroot(fa[x])) rot(x);else
            if ((ch[fa[fa[x]]][1]==fa[x])==(ch[fa[x]][1]==x)) rot(fa[x]),rot(x);else rot(x),rot(x);
        }
    }
    inline void acc(int u){
        int x=0;
        while(u){
            splay(u);
            ch[u][1]=x;
            u=fa[x=u];
        }
    }
    inline int find(int x){
        acc(x);splay(x);
        while(ch[x][0]) x=ch[x][0];
        return x;
    }
    inline bool qu(int x,int y){
        if (find(x)==find(y)) return 1;else return 0;
    }
    inline void re(int x){
        acc(x);splay(x);rev[x]^=1;
    }
    inline void in(int x,int y){
        if (qu(x,y)){printf("-1
    ");return;}
        re(x);acc(y);
        ch[y][1]=x;fa[x]=y;
    }
    inline void del(int x,int y){
        if (!qu(x,y)||x==y){printf("-1
    ");return;}
        re(x);acc(y);splay(y);ch[y][0]=fa[ch[y][0]]=0;
    }
    inline void change(int x,int y,int w){
        if (!qu(x,y)){printf("-1
    ");return;}
        re(x);acc(y);splay(y);pu(y,w);
    }
    inline int que(int x,int y){
        if (!qu(x,y)) return -1;
        re(x);acc(y);splay(y);
        return ma[y];
    }
    inline void inl(int x,int y){
        num++;
        if (!l[x]) l[x]=num;else b[r[x]].ne=num;
        b[num].y=y;b[num].ne=0;r[x]=num;
    }
    inline void dfs(int x){
        for (int i=l[x];i;i=b[i].ne)
        if (!fa[b[i].y]){
            fa[b[i].y]=x;
            dfs(b[i].y);
        }
    }
    int o;
    int main(){
        register int i;
        ma[0]=-1e9;
        while(scanf("%d",&n)!=EOF){
            num=0;
            memset(fa,0,sizeof(fa));
            memset(ch,0,sizeof(ch));
            memset(c,0,sizeof(c));
            memset(l,0,sizeof(l));
            memset(rev,0,sizeof(rev));
            for (i=1;i<n;i++){
                x=read();y=read();
                inl(x,y);
                inl(y,x);
            }
            for(i=1;i<=n;i++) ma[i]=key[i]=read();
            fa[1]=1;
            dfs(1);
            fa[1]=0;
            m=read();
            while(m--){
                o=read();
                int x,y,z;x=read();y=read();
                if (o==1) in(x,y);else
                if (o==2) del(x,y);else
                if (o==3) z=read(),change(y,z,x);else
                printf("%d
    ",que(x,y));
            }
            printf("
    ");
        }
    }
    View Code
  • 相关阅读:
    因为这几个TypeScript代码的坏习惯,同事被罚了500块
    如何设计好分布式数据库,这个策略很重要
    线程、多线程和线程池,看完这些你就能全部搞懂了
    章方:征服耶鲁教授的算法大神程序媛
    从零开始学python | 使用Python映射,过滤和缩减函数:所有您需要知道的
    c# 优化代码的一些规则——用委托表示回调[五]
    mysql 重新整理——索引优化explain字段介绍一 [九]
    mysql 重新整理——索引优化explain简单介绍 [八]
    mysql 重新整理——索引简介[七]
    mysql 重新整理——七种连接join连接[六]
  • 原文地址:https://www.cnblogs.com/Enceladus/p/5239977.html
Copyright © 2011-2022 走看看