zoukankan      html  css  js  c++  java
  • HDU 2457:DNA repair

    Description

    Biologists finally invent techniques of repairing DNA that contains segments causing kinds of inherited diseases. For the sake of simplicity, a DNA is represented as a string containing characters 'A', 'G' , 'C' and 'T'. The repairing techniques are simply to change some characters to eliminate all segments causing diseases. For example, we can repair a DNA "AAGCAG" to "AGGCAC" to eliminate the initial causing disease segments "AAG", "AGC" and "CAG" by changing two characters. Note that the repaired DNA can still contain only characters 'A', 'G', 'C' and 'T'. 

    You are to help the biologists to repair a DNA by changing least number of characters.
     

    Input

    The input consists of multiple test cases. Each test case starts with a line containing one integers N (1 ≤ N ≤ 50), which is the number of DNA segments causing inherited diseases. 
    The following N lines gives N non-empty strings of length not greater than 20 containing only characters in "AGCT", which are the DNA segments causing inherited disease. 
    The last line of the test case is a non-empty string of length not greater than 1000 containing only characters in "AGCT", which is the DNA to be repaired. 

    The last test case is followed by a line containing one zeros.
     

    Output

    For each test case, print a line containing the test case number( beginning with 1) followed by the 
    number of characters which need to be changed. If it's impossible to repair the given DNA, print -1.
     

    Sample Input

    2
    AAA
    AAG
    AAAG
    2
    A
    TG
    TGAATG
    4
    A
    G
    C
    T
    AGT
    0
     

    Sample Output

    Case 1: 1
    Case 2: 4
    Case 3: -1
     
     
    dp乱跑
    #include<iostream>
    #include<queue>
    #include<string>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    
    const int LO=4,NU=1005;
    inline int f(char u){
        if (u=='A') return 0;else
        if (u=='C') return 1;else
        if (u=='G') return 2;else
        if (u=='T') return 3;
    }
    struct tree{
        int f;
        bool w;
        int t[LO];
        int v[LO];
    }t[NU];
    int n,m,p,num;
    bool us[NU];
    char s[10000];
    queue <int> q;
    int dp[1005][NU];
    inline bool dfs(int x){
        if (x==0) return 0;
        if (t[x].w) return 1;
        if (us[x]) return t[x].w;
        us[x]=1;
        return t[x].w|=dfs(t[x].f);
    }
    inline void in(){
        int p=0,l,m=strlen(s);
        for (register int i=0;i<m;i++){
            l=f(s[i]);
            if (!t[p].t[l]) t[p].t[l]=++num;
            p=t[p].t[l];
        }
        t[p].w=1;
    }
    inline void mafa(){
        register int i;int k,p;
        q.push(0);t[0].f=0;
        while(!q.empty()){
            k=q.front();q.pop();
            for (i=0;i<LO;i++)
            if (t[k].t[i]){
                p=t[k].f;
                while((!t[p].t[i])&&p) p=t[p].f;
                t[t[k].t[i]].f=(k==p)?0:t[p].t[i];
                q.push(t[k].t[i]);
            }
        }
    }
    const int INF=1e9;
    int main(){
        int tt=0;
        register int i,j,k,l;int u;int ans;
        for(;;){
            tt++;
            scanf("%d",&n);
            if (!n) return 0;
            num=u=ans=0;
            for (i=0;i<n;i++) scanf("%s",s),in();
            mafa();
            for (i=0;i<=num;i++) us[i]=0;
              for (i=0;i<=num;i++)
            t[i].w|=dfs(i);
            for (i=0;i<=num;i++)
            for (j=0;j<LO;j++){
                if (!t[i].t[j]){
                    u=t[i].f;
                    while(!t[u].t[j]&&u) u=t[u].f;
                    u=t[u].t[j];
                }else u=t[i].t[j];
                t[i].v[j]=u;
            }
            scanf("%s",s);
            n=strlen(s);
            for (i=0;i<=n;i++)
            for (j=0;j<=num;j++) dp[i][j]=INF;
            dp[0][0]=0;
            for (i=0;i<n;i++)
            for (j=0;j<=num;j++)
            if (dp[i][j]!=INF)
            for (l=0;l<LO;l++)
            if (!t[t[j].v[l]].w)
            if (dp[i+1][t[j].v[l]]>dp[i][j]+(l==f(s[i])?0:1))
            dp[i+1][t[j].v[l]]=dp[i][j]+(l==f(s[i])?0:1);
            ans=INF;
            for (j=0;j<=num;j++) if (dp[n][j]<ans) ans=dp[n][j];
            if (ans==INF) ans=-1;
            printf("Case %d: %d
    ",tt,ans);
            for (i=0;i<=num;i++)
            for (j=0;j<LO;j++) t[i].t[j]=t[i].v[j]=0;
            for (i=0;i<=num;i++) t[i].w=t[i].f=0;
        }
    }
    View Code
     
  • 相关阅读:
    搭建负载均衡的环境(利用虚拟机上的四台centos)
    java的IO,AIO简单对比
    【每日分享】关于漏测
    安装xampp后,遇到的各种问题
    端口占用问题——netstat命令
    随笔
    AJAX 状态值(readyState)与状态码(status)详解
    CSS 实践:实现下拉菜单的方法
    css3动画总结
    判断手机运营商
  • 原文地址:https://www.cnblogs.com/Enceladus/p/5312284.html
Copyright © 2011-2022 走看看