zoukankan      html  css  js  c++  java
  • POJ3660——Cow Contest(Floyd+传递闭包)

    Cow Contest

    Description
    N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.
    The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ N; A ≠ B), then cow A will always beat cow B.
    Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.
    Input
    * Line 1: Two space-separated integers: N and M
    * Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B
    Output
    * Line 1: A single integer representing the number of cows whose ranks can be determined
    Sample Input
    5 5
    4 3
    4 2
    3 2
    1 2
    2 5
    Sample Output
    2

    题目大意:

        给一些牛的排名关系,问有多少牛的排名确定。

    解题思路:

        使用Floyd算法来判断传递闭包。

        首先通过输入信息建立邻接矩阵,再使用Floyd求出最短路径Edge[i][j]。

        这时,相对于牛i若Edge[i][j]存在,则说明i肯定打不过j。若Edge[j][i]存在则说明i肯定打得过牛j。

        若i肯定能打过的牛和肯定打不过的牛的和等于牛的总和N-1,则牛i的位置确定。

        据说这个东西叫做传递闭包--!

    Code:

     1 #include<stdio.h>
     2 #include<string>
     3 #include<iostream>
     4 #define MAXN 300
     5 using namespace std;
     6 int edge[MAXN+10][MAXN+10];
     7 int N,M;
     8 void init()
     9 {
    10     for (int i=1; i<=N; i++)
    11         for (int j=1; j<=N; j++)
    12             edge[i][j]=INT_MAX;
    13 }
    14 void floyd()
    15 {
    16     int m,i,j;
    17     for (m=1; m<=N; m++)
    18         for (i=1; i<=N; i++)
    19             for (j=1; j<=N; j++)
    20             {
    21                 if (edge[i][m]!=INT_MAX&&edge[m][j]!=INT_MAX&&edge[i][j]>edge[i][m]+edge[m][j])
    22                     edge[i][j]=edge[i][m]+edge[m][j];
    23             }
    24 }
    25 int main()
    26 {
    27     while (cin>>N>>M)
    28     {
    29         init();
    30         for (int i=1; i<=M; i++)
    31         {
    32             int x1,x2;
    33             scanf("%d %d",&x1,&x2);
    34             edge[x1][x2]=1;
    35         }
    36         floyd();
    37         int sum=0;
    38         for (int i=1; i<=N; i++)
    39         {
    40             int cnt=0;
    41             for (int j=1; j<=N; j++)
    42             {
    43                 if (i!=j&&edge[i][j]!=INT_MAX)
    44                     cnt++;
    45                 if (i!=j&&edge[j][i]!=INT_MAX)
    46                     cnt++;
    47             }
    48             if (cnt==N-1) sum++;
    49         }
    50         printf("%d
    ",sum);
    51     }
    52     return 0;
    53 }
  • 相关阅读:
    使用Python的Mock库进行PySpark单元测试
    库龄报表的相关知识
    使用PlanViz进行ABAP CDS性能分析
    Spark SQL中列转行(UNPIVOT)的两种方法
    Spark中的一些概念
    使用Visual Studio Code进行ABAP开发
    2019年的几个目标
    Dom--样式操作
    Dom选择器--内容文本操作
    Javascript面向
  • 原文地址:https://www.cnblogs.com/Enumz/p/3865777.html
Copyright © 2011-2022 走看看